
D-Ai41 823 USER CENTERED SYSTEM DESIGN PART 2 COLLECTED PAPERS 1/'2
FROM THE UCSD NMI PROJECT(U> CALIFORNIA UNIV SAN DIEGO
LR JOLLA INST FOR COGNITIVE SCIENCE MAR 84 ICS-8482

UNCLASSIFIED N89814-79-C-0323 F/6 5/ NL

EhhmmmhhhhmuEhhIIIIIIEEEI
mommommomom I

mommommoll

VV

,I ImLE LL

125 40 1.6III- H I1

It!,

MICROCOPY RESOLUTION TEST CHART
NATIONAL. BURE AU OP STAWARDOS -963- A

ilt.
4

k ~ ~ ~ M pP2~, , ifl"

- £.~Pm

rr

.TO.

0 ac 12

INTIUT F ReCOGtNo.IV SCIENCEr'

ctWRIYO AIONA A IEOL OLCLTRI 29

USER CENTERED SYSTEM DESIGN

Part II

COLLECTED PAPERS
from the

UCSD HMI PROJECT

March 1984

ICS Report No. 84M-

The papers included in this collection were prepared f'r several different
conferences, including the 7th Annual Conference on Software Engineer-
ing, Florida, March 1984, and the First IFIP Conference on Human-
Computer Interaction to be held in London in September 1984.

'C

The rese w ch reported here was caducted wder Conract NUOI4-79-C.W23.NR 667-437 widh d Per mml
od Tridn Reseorch Programs qcf t Office df Ndl Re5wrc, aid w= asp red by to Office qf Naal
Rezarch ai a graw from the Stymem Develqmwne Fomdmim. The views id cmwlmioua cmdwd iu #Ads
domm are thme cf the uthors id soudd am be ianerpreted w acessmiy repr'eeq the 'qficidl pai-
e4s, either expresMd or implied, cf the imomp c elews. ApAllvd for pW& reksme dimslhmtm medim-
ied. Repredactie ix whlek or in prt is permitned for V prpese df th Uned Staca Govermnt. "

ONR REPORT 02

lquats for reprints should be smt to Doald A. Norman, asttute for Cognitive Science C-0O5;
University of California, San Diego; 1A Jolla, California, 92M3, USA.

Copyright 0 1984 The HM! Project. All rghts rese.ed.

i.•4

- . - . . - . - - . •. . • . o 1

Unclassified
REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

BEFORE COMPLETING FORM "'

I &iEPC My % M fJ EN OVT ACCESSION NO. 3. RECIPIENT*S CATALOG NUMBER

ONR #8402 JY.P _
4. TITLE (and Suble.ir) S. TYPE Of REPORT A PERIOD COVEREO

User Centered System Design: Part II, Collected
Papers from the UCSD HMI Project Technical Report

6. PERFORMING ORG. REPORT NUMBER

ONR 8402 ICS #8402
7. AUTNOR(&) S. CONTRACT OR GRANT NUMBER(*)

The UCSD HMI Project 4 CNoo014-79-C-0323

ANOP1T ITYN i NAMEAMO & ,ORnSS ,o. PROGRAM ELEMENT. PROJECT. TASK
i-nr rn? ormation Processing AREA & WORK UNIT NUMMERS

Institute for Cognitive Science NR 667-437
University of California, San Diego
T. T,.11p . & 9A 02__ _ __ __ _ __ __ _ __

II. CONTROLING OFFICE NAME AND AOORESS I1. RPORT OATE

Personnel & Training (Code 442 PT) March 1984
Office of Naval Research 13. MUM8ER OF PAGES

800 N. Quincy St., Arlington, VA 22217 120
I4. MONITORING AGENCY NAME A AORISS(If diffm b CerWOMS' 01190) IS. SECURITY CLASS. (of le report)

Unclassified

| 6. O[c ASSIFICATION/ OOWN GRAOING
DCIEUL E

It. DISTRIBUTION STATEMENT (of thuis Iect)

Approved for public release; distribution unlimited.

17. CISTRI§UTION STATEMENT (of the abstacoored ia Stock 20. II differentm RheN)

Il. SUPPLEMIENTARY NOTES

This research was also supported by a grant from the System Development Fndn.

19. KEY WORDS (ConsEIIe a rovers@ *fd. if noe..o.mvW demtify Or Weck mmbe)"
help systems human-computer interaction
computer system evaluation information retrieval
documentation interface design
expert systems software engineering
expert-novice users structured activities

20. ABSTRACT (CmI n river"~o aide It uIC686"inW and identh If' block *umbAW)

OVER

DD , GN"7 1473 COITION OF I NOV S IS OUSOLETE Unclassified
S / N 0 1 0 2 L F 0 1 4 4 6 0 1 _ _ _ _ _ _C L S S F I A T O N O F T H S_ A G_ (he_ D te__ _ _ _

SECURITY CLmASSIFrICATION Oi7 TMIS PAGE (When Data EIeS)

- -- |- I -- * -i lt dmmmW - m l i

SgfeUIaRIY CLASSIFICATION OF THIS PAGEru~.n D.,. Entered)

ji AbStract

This report is a collection Of recp!t Paprs by the Hluman-Machine Interaction group at the university of calb-
for" aSan Dieg.--
Siores mo Levels in Huma-Mezkh Interorctlesby D.A. Nbkonan
The interaction between a peso and a computer system involves four different stages of activities--iime.
aeklm, exrecuion. and evaino h-u of which may occur at different levels of specification. Analysis of
these stages and levels provides a useful way of looking at the issues of human-computer interaction.

T Noe ef Eipertise in UNIX by S. Draper
This paper discusses the nature of expertise in UNIX, arguin that in certain senseo of the word there are no
experts. The consequences for interface design of revising the common-sense notion of expertise, particularly
with respect to designing help facilities, are then discussed.

Uses lot tkRealWorld by D. Owen
Boed on the premise that people demonstrate a considerable degree of competence at formulating and achieving
gnals in the world, this pae seeks to identify and -min* the relationship between the crucial characteristics

.4 of the rsd world and inherent or acquired human skis that support this competence, in order to improv the
* hbuman computer interface. Aspects examined include a 'naive PhCs'; of computing and the reconstruction of
* .. ~ propositionally held information.

Cavriorive eeractlw A Neted for Sladyleg Uar'Comprer-Ui laeerwim by C. O'Malley, S. Draper, and
M.S. Riley
This paper describes a promisin tecniu for studying human-machine interaction called Constructive Interne-

* tin (Iyake. 1982).It consists essentially of recording sesins with two participants who are discussng some
* topi which they do not fully understand. iyake was interested in what was revealed about the underlying

achema of the participants and how new scheme can originate in an interaction between two people. We are
interesed in what this basic situation can offer for the study of Hill.

Pwmdeizdq To* Dewrptoi for Co.mma SpeicVen~a ood Doraooeieso byP. Smoleneky, M.L. Monty, and E.
Conway
The problem of formally describing computer tasks in term of the input gve and the output desired is con-
.dired. A feasibility study in the doman of printing suppsits that swk uarlheaa pro"id a powerful language
for such descriptions. It is argued that task description is important for moving the cente of human-machine
interface design away from the machine and toward the user.

Prlekms in Evaiuutdau of Ro~moComeer Imoerfarezz A Caoe Study by LJ. Bannon and C. O'Malley.
One of the most difficult specrts of interface dep is evaluating new or changed features of an interface. Tis
paper evaduates methods of evaluation and design in thje contest of a progrant developed to insit users in get-
ting quick acceso to information contained in the UNIXK anual.

Plesriq Nets: A Frmseworkf1w Aneiieg UnwCsmpomer Iteractim by M.S. Riley and C. OMafley
During the course of interacting with a compu, a uehaplsthat correspond to tasks to be performed and
must plan how to achieve these oals with the aalable commands. A framework for analyzing use gals, the

maping betwee those goals adavailable commns n the factors influencing the succeus and eficecy of
the reuting plans is pented. Th Implications of this analysis for the development of principles for improv-
ing usrcmuter interactions aedisusd

Acivity Ser"!se by A. Cypher
A session with the computer can be organized around the aclviies of the user, rather than around the erticau of
the comter. A user-centered approach to groupinag stereotypcal sequences of commands into scripts or mnac-

rosisdisused.Ths pproach ill ustraes several isse in H sunComputer Interaction: Joint preme. miwirig,
siftsuk olsches. and visil e effects.

DESCIBE: Envirwsv for SpecifyLiog Cammaos a~d Retrevnlr4iqfmnedm. by Eleabrutda. by S. Greenspan and
In communication between people. objects and events are principally rferred to through dewrpuiei. This note
argues that the badec principles that make such reference by desription possible can also be employed in com-
munication between ople and computers. A new type of operating system called DESCRIB in which coin-
mands and Ake are =e~cod by description (as well us by ame) is proposed.

Cwuwam sinh Use 4V Expert Syms by Li. Bannon
Recntl w have witnessed a round of asertions and counter-assertions about the capabilitie of applied Al.

lywcaully in the ares called 'knowledge engineeig," wher scientists are involved in the building of so-called
syst ems" that are desiped to mimic the -performance of human experts in certain domains. Strong

clam about the potential social beniefits of such system are being voiced, but this paper is concerned with the
cavats.

Sof wac Euglucering or User Irerf aces by S. Drape and D.A. Norman
The discipline of Software Engineering can be extended in a natural way to deal with the issues raised by a sys-
tematic approach to the design of human-machine interfaces. Two main points are made: that the user should
be treated -apart of theq --- ~ %A4,, designed. .'td that projects should be orgazd to take account of tht
current (small) Ktate of a priori knowledge about how to design interfaces. _

Unclassified

SifUftiTY CLASSWtICAIION 0F THIS PAGEfS7von Dero Entered

Tle HMI Project User Centered System Design. 11

USER CENTERED SYSTEM DESIGN:

COLLECTED PAPERS from the UJCSD EMI PROJECT

AMSTAGES AND LEVELS IN HUMAN-MACHINE INTERACTION'......... 5
* Donsld A. Norman~

THE NATURE OF EXPERTISE IN UNIX'1
Stephen W. Drepr........................1

SUSERS IN THE REAL WORLD~ -. 31
David Owen

>CONSTRUCTIVE INTERACTION: A METHOD FOR STUDYING
USER-COMPUTER-USER INTERACTION,~4

Claire O'MWaiey. Stephrn W. Drape, &mW4(fey S. Riley

->FORMALIZING TASK DESCRIPTIONS FOR COMMAND SPECIFICATION
AND DOCUMENTATION;,... 51

Pad Smdtewky, Melissa L. Momy. and Eileen Conway

~PROBLEMS IN EVALUATION OF HUMAN-COMPUTER INTERFACES:
A CASE STUDY- .~.............67

> PLANNING NETS: A FRAMEWORK FOR ANALYZING
USER-COMPUTER INTERACTIONS-77

Mary S. Riley and Claire O'Malle

ACTIVITY SCRIPTS..8
Allen Cypher 2................

DESCRIBE: ENVIRXONMENTS FOR SPECIFYING COMMANDS
AND RETRIEVING INFORMATION BY ELABORAT7IN.................................9

Steven L. Greenip.. mu Paod Sriolentky

CAVEATS ON THE USE OF EXPERT SYSTEMs' 101
Lim J. Hamm

SOFTWARE ENGINEERING FOR USER INTERFACES 107
Stepimn W. Draper and Dondd A. Norman

The HMR Project 1User Centered Sytem, Design: EU

ABSTRACTS

stages and LAes IN ~-ahm Interactlam by D.A. Noramn
The interaction between a person and a computer systemt involves four different stages of
activitiein-buavom s.IecHoni execuimm. ad eya eeac of which may occur at dif-
ferenit levels of specification. Analysis of these stages and leveis provides a useful way of
looking at the issues of human-computer interaction.

The Nature of Expertis In UNIX'I by S. W. Drqer
This paper discusses the nature of expertise in UNDX, arguing that in certain senses of the
word there are no expects. The consequences for interface design of revising the common-
sense notion of expertise, particularly with respect to desiping help facilities, are then die-
cussed.

Vanr In the Redl Woirld by D. Owen
* Based on the premise that people demonstrate a considerable degree of competence at for-

mulating and achieving goals in the world, this papar seeks to identify and examine the
relationship between the crucial characteristics of the real world and inherent or acquired
human skills that support this competence, in order to improve the human computer
interface. Aspects examined include a 'naive physies of computing and the reconstruction
of propositionally held informaion.

Ceatruetive Interaction: A M*Uho fair Stadylg User-Coinpster-Usr laeretle. by C.
O'Malley. S. Drquer, amd MJ. Riley
This paper describes a promising technique for studying human-machine interaction called
Constructive Interaction (Miyake, 1982). It consists essentially of recording sessions with
two participants who are discussing some topic which they do not fully understand.
Miyake wa interested in what was reveale about the underlying schemes of the partici-
panits and how new schenias can originate in an interaction between two people. We are
interested in what this basic situation can offer for the study of HMI.

Fomaizing Task Demrlpthams for Coininmd Speeffleo and Deetattom by P. Smotensky,
ML. Mory,iad E. Copdy
The problem of formally describing computer tasks in term of the input gSen and the
output desired is considered. A feasibility study in the domain of printing suggests that
is* mates. provide a powerful language for such descriptions. It is argued that task
description is important for moving the center of human-machine Interface design away
from the machine and toward the user.

3. UNIX is a tradm*k of 5@11 Labottod. The 0MINmEte is them. pqws .5w to the 4.1 131D vwuiom duviope
a the Uiwuisty of Califoria. Dmtday.

The HMi Project 2 User Centered System Design: H

Probles In Evalutlom of fmaau-Computer Interfac: A Case Study by LJ. Bamon and C.
O'Madly
One of the most difficult aspects of interface design is evaluating new or changed features
of an interface. This paper discusses methods of evaluation and design in the contest of a
program developed to mist users in getting quick access to information contained in the
UNIX manual.

Planning Nets: A Framewerk for Analyzing User-Computer lateractins by MS. Riley and C.
O'Mailey
During the course of interacting with a computer, a user has goals that correspond to tasks
to be performed and must plan how to achieve those goals with the available commands. A
framework for analyzing user goals, the mapping between those goals and available com-
mands, and the factors influencing the success and efficiency of the resulting plans is
presented. The implications of this analysis for the development of principles for improv-
ing user-computer interactions are discussed.

Activity Scripts by A. Cyphwr
A session with the computer can be organized around the activities of the user, rather than
around the actions of the computer. A user-centered approach to grouping stereotypical
sequences of commands into scripts or macros is discussed. This approach illustrates
several issues in Human/Computer Interaction: Joinr proMem solviq, soolltas mismtches,
and visie effects.

DESCRIBE: Envtronments for Specifting CAmmnds ad Retrieving form'tiom by Elobera.
tie. by S. Greenspan and P. Smoleiky
In communication between people, objects and events are principally referred to through
descripxion. This paper argues that the basic principles that make such reference by descrip-
tion possible can also be employed in communication between people and computers. A
new type of operating system called DESCRIBE in which commands and files are referenced
by description (as well as by name) is proposed.

Caveats en the Use of Eqert Systems by LJ. B....
Recently we have witnessed a round of assertions and counter-assertions about the capabili-
ties of applied AI, specifically in the area called 'knowledge engineering,' where scientists
are involved in the building of so-called "expect systems' that are designed to mimic the
performance of human experts in certain domains. Strong claims about the potential
social benefits of such systems are being voiced, but this paper is concerned with the
caveats.

Softwwe Egineerlng fer User interfaes by S. Draper and DA. Norm..
The discipline of Software Engineering can be extended in a natural way to deal with the
imues raised by a systematic approach to the design of human-machine interfaces. Two
main points are made: that the user should be treated as part of the system being designed,
and that projects should be organized to take account of the current (small) state of a
priori knowledge about how to design interfaces.

'S .;"*"*"*"t. ... ".,".o . *-"..," ."." ..:- ."- . .. '." . . ." " .' ,'""''"...'

Norman 5 Stages and Levels

STAGES AND LEVELS IN HUMAN-MACHINE INTERACTrION

Donald A. Norman

The interaction between a prson anad a coasparer system involves 10ev different stages of
artiviles-intcntion, selection, execution. iad evaluation-each of wi'dch may occwr a
diff eren levels of specif Icwlo Analysis of themse nags and levels provides a uref ad
way of io&ing at the issues of hma~o~wringeractle. 2

My concern is with the overall process of interaction with the computer. I want to avoid
an emphasis on detailed aspects of that interaction and ask about the nature of the interaction.
Details are indeed important, but only once the proper conceptualization has been applied.
Consider a simple situation. A user of a computer system is writing a paper and, in the pro-
cess, decides that the appearance of the printed draft is not ideal: the paragraph indentation
does not look proper. The user forms an intention: to correct the appearance of the paper.
Now the problem is to satisfy this intention by translating it into the appropriate set of
actions. The purpose of this paper is to examine some aspects of the interaction between a
person and the computer system as the person attempts to satisfy the intention. The focus is
derived from three observations:

1. When a person interacts with a computer, it is possible to identify four different stages
of that interaction, each with different 1pals, different methods, and different needs
(Norman, 1984).

2. Each of the known techniques for the interface has different virtues and different defi-

ciencies. Any given method appears to lead to a series of tradeoffs. Moreover, the
tradeoffs differ across the four stages of user interaction (Normani, 1983a).

3. Messages and interactions between user and machine can take place at a number of dif-
ferent levels. If the levels are not matched, confusion and misunderstanding can arise.
Determining the appropriate level is a difficult task, often requiring some knowledge
of the intentions of the user (Norman, 1961a, 1983b).

Let us start with a brief analysis of the stages.

I. Te Idess discused hern mlt from iunterachions with ansbers of the UCSD Hvina44sMinae Interaction stup.
The sumerip ha bms submaitted to the Imsrnsdad Idrad 4f N.SNM Sadlaa. Various sacion. of the paper
hac hese presnted at the SIOCHI Conference on Computer-Hui [nte-r -tion (Notion, AM~). the [FIPS Pinst
Conference o ffumm.Cousputr Interaction (Norman., H"4, ad a the 181 Conference on Intelligent Interace
(New Ifmpsblr, INI). Sonda Bffett ad Edwina Riiland hare provided helpful cuitiques of various drafts of the

'p'

Norman 6 Stages and Leveia.

6~-I The Foor Stages of User Activities

I define Intenion as the internal, mental characterization of the desired goal. Intention is
the internal specification of action responsible for the initiation and guidance of the resulting
activity. Although intentions are often conscious, they need not be. Selection is the stage of
translating the intention into one of the actions possible at the moment. To go from intention I
to action, the person must review the available operations and select those that seem most
auspicious for the satisfaction of the intention. Then, having mentally selected, the actual
command sequences must be specified to the computer. The determination of a particular
command or command sequence is selectiom; the act of entering the selections into the system
is execarion. Intention and selection are mental activities; execwion involves the physical act of
entering information into the computer. These activities do not complete the task. The
results of the actions need evaation, and that evaluation is used to direct further activity.

Thus, the full cycle of stages for a given interaction involves:

* Forming the intention;
* Selecting an action;
0 Executing the action;
* Evaluating the outcome.

Perhaps the best way to understand the differences among the stages is to continue with
our example. The intention is to improve the appearance of the printed version of the
manuscript. This is a higher order statement that must get translated into more specific terms.
Suppose that because it is the paragraph indentation that looks wrong, the user decides to
switch to a 'block paragraph' format-a format in which the initial line of a paragraph is not
indented. We now have a second level of intention: call the main intention Intentios and this
new level intention1 . But even intention, is not sufficiently specific. Suppose the manuscript is
being prepared by means of a traditional editor and run-off facility, so the manuscript contains
formatting instructions that get interpreted at run-off time. One way to carry out the inten-
tion is to change the definition of the paragraph. Another way is to bypass the paragraph for-
mat specification and to substitute a blank line instead. There are several ways of carrying out
each of these methods, but suppose that our user decides upon the latter technique, substitut-
ing for the paragraph specification 4p, the "skip a line specification, .sp. 1his becomes inten-
don2 .

Having formed Intention, the next step is to select an appropriate set of actions to carry it
out. This requires a set of text-editing commands, commands that find the appropriate loca-
tion in the text that is to be changed (in this example, there are apt to be a rather large number
of locations), then commands that change the pp to .sp. There are several different ways of
doing these operations. Thus, in the particular text editor that I happen to be using to write
this paper (Berkeley UNIX vi), the following command sequence will do the operation

pp/spptsp/. 3 A more detailed analysis of the steps involved in making the selection would

3. As with many test editors, the command sequence is not particularly intelligible. Tne initial g signals that the
command is to be performed "loballf to all occurrenaces of the sning. The rw is the stins that is searched for in
the tea: a lie that bgius with '.pp.' Te remaining par of the line specifim the sathate command: substitute for A

the serin Opp' the string lop.' Use of the y ten editor will recognize that eve this description is sightly rmpli-
fled. It should be clear that adectiog this command string is a remooably complex operation, requiring the setting of
numerous sub-ntetions and enling in mem problem-eolving.

% I

Norman 7 Stages and Levels

reveal that several more levels of intentions were involved. Eventually, however, a set of text-

editing commands will be selected. We must take note of one more level of intention: the
intention to execute the selected command sequence. Call this intenton3.

Having selected the command sequence, the next step is to execute the selection. In vi,

this will require yet another action cycle to get the editor into the mode in which the substi-
tute command will work properly, an action cycle that requires yet more levels of intentions,
selection, execution, and evaluation. Finally, if all has gone well, the user has executed inten.
dora3, and entered the command sequence into the system. Although execution has its own
cycle of activities and sub-intentions, let us skip over them and assume that this stage has been
performed properly.

This brings us to evaluation. Evaluation has to occur separately for each level of inten-
tion. First, it is necessary to check that the command sequence entered into the editor is the
one intended. Then the manuscript text must be examined to make sure that intention3 (the
global change) got properly carried out: that all the .pp lines do indeed now say Jp. If they
do, intention2 (change pp to sp) has also been satisfied. Then intention, (change to block para-
graph format) must be evaluated by means of yet another action cycle and another set of inten-
tions. To see if the paragraphs come out in desired block-paragraph style, it is necessary to
vrun-off' the manuscript: this involves a new intention, intentionkA, and a new selection of com-
mands. When all that is complete, the user can finally examine the printed page and determine
whether intention, has been satisfied. If so, then the outcome can be evaluated with respect to
intention0 to determine whether the new format is a satisfactory improvement over the original.

Stages Are Approximations

Note that although it is useful to identify stages of user activity, the stages should be
thought of as convenient approximations, not as well-defined, well-demarcated psychological
states. People arc not serial-processing mechanisms, they do not have well-defined stages of
decision processes or action formation, and they often are not conscious of the reasons for
their own actions. People are best viewed as highly-parallel processors with both conscious and
subconscious processing, and with multiple factors continually interacting and competing to
shape activity (see Norman, 1981a, b; Rumelhart & Norman, 1982). Nonetheless, the approxi-
mations used by this analysis may yield relevant and worthwhile results for the identification of
important design considerations.

The Intention Stage

From the point of view of a system designer, there are two different aspects of inten-
tions, each of which can be divided into two different concerns. The first aspect is the
system's need (and ability) to know the intentions of the user, the second is the support that
can be offered to the user to help form appropriate sub-intentions.

Knowing the user's intentions. Consider what the system might need to know about the
user's intentions. There are two concerns here: (a) what needs to be known about a user's

intentions, and (b) how it is possible for a computer system to get this information. The prob-
lem is made more complex because of the multiple-layers of intentions that exist, with any

,'4

~~~. . .. o .. . .-.

. ~~.1 ,'.?,:.-. ,-.,;:,': . '-..



Norman 8 Stages and Levels

reasonable task involving a fairly complex structure of intentions and sub-intentions. Still, for
a system to provide useful guidance and feedback, it is going to need information about the
user's higher-level intentions, both the overall, general intention and the sub-intention that is
relevant at the moment (and perhaps the entire chain from the current sub-intention back to
the highest level intention). Indeed, one could argue that all assistance (including help and
error messages) requires input about the higher levels of user intentions in order to be mai-
mally effective (see Johnson, Draper, & Soloway, 1983). The second concern, how a system can
get the necessary information about the user's intentions, is the hard one. In some cases, the
user can simply be asked. In others, it will be far more complicated. I expect that as we learn
more about what the higher-levels of intention relevant to the task are, we will go a long way
toward solving the how problem.

System support for sub-intention formation. There are usually two things a user needs
to know in forming intentions: what is the current status of things?; what is possible, given the
current status and system facilities? (Both of these points are also appropriate for other stages:
the question 'what is the current status?' is part of evaluation; the question 'what is possible?'
is part of selection.) We need to learn how to provide this information, at the appropriate
level of sophistication for a given user at a given task, without intrusion.

The Selection Stage

Some intentions might map directly onto a single action, others might require a sequence
of operations. In either case, the selection of an action sequence can require considerable
knowledge on the part of the users. There are two aspects of selection. One is to figure out

A the method that is to be used in doing the task, the other to select which particular system
commands are to be invoked. Consider how users decide what the options are in the selection

- process. How do they know the commands? There are four ways:

1. They could retrieve them from memory.

2. They might be be reminded, either by another person, the system, or a manual.

~. ~3. They might be able to construct or derive the possibilities.

4. They might have to be taught, either by another person, the system, or a manual.

In the first case, recall-memory is used to identify the desired item. In the second case,
recognition-memory is used to identify the desired item from the list or description of the
alternatives. In the third case, the user engages in problem solving, perhaps using analogy,
perhaps eliminating possibilities. And in the fourth case, the user learns from some external
source. This raises the issue of how the user knew that msistance was needed and how that

assance was then provided-a major theme of study in its own right.

Support for the selection stage comes principally from memory aids (manuals and various
on-line support tools such as menus, help commands, and icons) that allow the user to deter-
mine the possible commands and their modes of operation, prerequisites, and implications.
Selection can be enhanced by 'workbenches that collect together relevant files and software



Norman 9 Stages and Levels

support in one convenient location. Other methods of structuring groups of commands and
files dependent upon the user's intentions need to be explored (for example, see Bannon, L.,
Cypher, A., Greenspan, S., & Monty, M.L., 1983).

The Execution Stage

Naming. There are two ways to specify an action to the computer muning and pointing.
Naming is the standard situation for most computer systems. The designer provides a com-

* . mand language and the users specify the desired action by naming it, usually typing the
appropriate command language sequences. A speech input system would also be executing by
naming. Execution by naming provides the designer with a number of issues to worry about.
What is the form of the command language? How are the commands to be named, how are
options to be specified? How are ill-formed sequences to be handled? How much support
should be provided the user?

Most operating systems provide little or no support for intention, selection, or execution.
The user is expected to have learned the appropriate commands. T7hen the execution is judged
either to be legitimate (and therefore carried out) or erroneous (and an error message presented
to the user).

It is quite possible for a system to provide considerable support for these stages, to pro-
vide information that tells not only the actions available, but also the exact procedure for exe-
cuting them. This can be done with menus, perhaps abbreviated and restricted in content, so
that they serve as reminders of the major actions available.

Pointing. Execution of an action by pointing means that the alternative actions are visu-
ally present and that the user physically moves some pointing device to indicate which of the
displayed actions are to be performed. Although the prototypical 'pointing! operation is to
touch the desired alternative with a finger or other pointing device, the definition can be gen-
eralized to include any situation where a selection is made by moving an indicator to the
desired location.

Note that a naming system requires two things: A place to point at and a means of
pointing. We can separate these two. Moreover, as long as one needs a place to point at, it
might as well be informative. Thus, the places serve as reminders to the selection stage when
they consist of printed labels, lists, menus, or suggestive icons displayed on a terminal screen.
But the places need not be informative: they might be unlabelled locations on the screen (or,
in electronic devices, unlabelled--or ilegible--panels).

Executing by naming often allows a large set of possible actions, hard to learn, but effi-
cient in operation. Execution by pointing is restricted to those commands that can have a
specified location. As a result, proponents of naming systems say they are more efficient:
pointing requires sublevels. Proponents of pointing say they are easier to remember. One side
emphasizes ease of execution, the other ease of selection.



Norman 10 Stages anti Level&

The Evaluation Stage

Feedback is an integral part of evaluation, whether the operation has been completed suc-
cessfully or whether it has failed. For full analysis, the user must know a number of things:

,r~eS What the previous state of the system was;
0What the intentions were;

0 What action was executed;
0 What happened;
0 How the results correspond to the intentions and expectations;
9 What alternatives are now possible.

'7 The evaluation of an action depends upon the user's intentions for that action. In cases where
the operation could not be performed, either because it wasn't executed properly, or because
some necessary precondition was not satisfied, the user will probably maintain the same inten-
tion but attempt to correct whatever was inappropriate and then repeat the attempt. In cae
where the operation was done, but with undesirable results, the user may need to "undo' the
operation. In this case, repetition of the same action is not wanted.

One useful viewpoint is to think of all actions as iterations toward a goal. Ill-formed
commands are to be thought of as partial descriptions of the proper command: they are
approximations. This means that error messages and other forms of feedback must be sensitive

'%, .~to the intentions of the users, and, wherever possible, provide assistance that allows for modifi-
cation of the execution and convergence upon the proper set of actions.

The user support relevant to each stage is summarized in Table 1.

Interface Aids

Menus in the Four Stages

One of the more common interface aids is a menu, implemented either as a set of verbal
statements or as pictures ("icons'). It is useful to examine menus at this point for two reasons.
First, the use of menus is often controversial, in part because their use requires trading the per-
ceived value of the information provided by the menu for a loss of workspace and a time
penalty (these tradeoffs are discussed in Norman, 1983a). Second, two different aspects of
menus are often confounded. Menus can serve as a source of information for the intention
and selection stages. In addition, they can also provide information, or even the mechanism,
for the execution stage. That is, in execution by pointing, the menu or icon provides both
information and a place to point. Unnecessary confusion arises when these rules of menus for
selection are lumped with their roles for execution. Menus as sources of information for the
intention and selection stages have one set of virtues and deficits; menus as mechanisms for
the execution stage have another set of virtues and deficits. The point is that menus serve dif-
ferent purposes and have different tradeoff values for each stage: in part, the virtues for one
stage are pitted against the deficits for another. The properties of menus can be summarized

I. Menus are capable of providing information for intention and selection by-
A. Presenting the user with a list of the alternatives;



Norman it Stages and Levels

Table 1

*DESIGN IMPLICATIONS FOR THE STAGES OF USER ACTIVITIES

STAGE TOOLS TO CONSIDER

Structured Activities
Forming Workbenches
the Memory Aids
Internion Menus

Explicit Statement of Intentions

Selecting Memory Aids
the Menus
Action

Ease of Specification
Execsting Memory Aids
the Menus
Action Naming (Command Languages)

Pointing

Sufficient Workspace
Evaluating Information Required Depends on Intentions
the Actions Are Iterations toward Goal
Owcone Errors as Partial Descriptions

Ease of Correction
Messages Should Depend upon Intentions

%%

4"'..



Norman 12 Stages and Levels

B. Presenting descriptions and explanations of the alternatives.

U1. Menus can aid in the execution stage:
* A. If execution is by poiring, menus can aid by:

1. Providing a target to be pointed at.
B. If execution is by mni, menus can aid by.

1. Providing the user with an abbreviated execution name (such as the number
-sq of the menu line, a single letter, or a short abbreviation, usually

mnemonic);
2. Providing the user with the full command line (and arguments) that are to

The first function of menus, providing information, is really their primary function. The infor-
mation, explanations, and descriptions that they present are especially important in the stages
of forming the intention and selecting the action. Note that this function can be done
without any commitment to how execution is done. The second function of menus, aiding in
execution, can be of equal use for execution by naming or pointing. Menus are especially use-
ful when only a restricted number of alternatives is available, usually restricted to those
described by the menu. Execution might be performed either by pointing at the menu items or
by typing simplified command names (which are often so configured as to require only the typ-
ing of single characters).

* Another major design decision is the question of how to get access to menus. The alter-
* ~*\natives for menus are:

1. Always to be present in full form. Note that a set of labelled function keys can be
thought of as a menu that is always present, with execution by pointing (i.e., depress-
ing the -tppropriate key). In this sense, then, the panels of conventional instruments

'. ~.use a form of menus; the set of controls and range of possible actions are always visi-
ble. This option optimizes access to information at the expense of workspace.

2. Always to be preset in a reduced form that allows the user to request the full menu.
This option is a compromise position between the demands for information and
workspace.

3. Not to be present unless requested by a special command or labelled key (e.g., 'help")
or by some other action (e.g., a "pop-up' menu called by depressing a button on a
mouse). This option maximizes workspace at the expense of time and effort.

4. Available through a hierarchical or network structure, necessary when the menu size is
large.

Note that fans of menus usually are those who weight heavily the information provided for
intention and selection. Foes of menus usually are those who do not need assistance in these
stages and who object to the loss of time and workspace during execution and evaluation. The
differences come from differing needs at the different stages. Table 2 summarizes the effects of
these issues on menu design.

lei*



Nora 13 Stages and Lzvels

Table 2

PROPERTIES OF MENUS _______

!)VARIABLE VIRTUES DEFICITS

I~rmiionIlTe more information More information in-
4.,presented in one cremses times for search-

display, the more do- ing, reading, and
tailed the explanations displaying, making it
can be or the more a[- harder to find any
ternatives can be given item, decreasing
presented, in either nubility and use satis-
cme improving the faction.
quality of advice of-

-. fered the user.
Anmn of worksaee aud: The mome workspace The larger the percen-

available for the menu, tap of the available
the mote information space used, the more
can be displaynd and interference with other

4the better it can be for- uses of that space.
matted, lmPlif~ing
saruch and improving
intelligibility. __________

Display of a 1mg. musher Allows user to see a Slow to read, slow to
of MCM Item: law percestage of the display, ua iwg per-

alternativvs, aiding in- centap of the adaiable
tention and selectoa space.
saps mad minimizing

2 number of menu need-
* ~~ad.__ _ _ _ _

Display of a saw musher Essy to red, quick to If number of alterna-
of Ase im ms: display, only a small tiwes is large, multiple

percentage of the sads- mns must be provid-
able space is required. ed. This emn be slow

____ ____ ____ ___ and cumber ome.



Norman 14 Stages and Lievets

Levels of Activity

The Problem o' Levels

The existence of numerous levels of intentions leads to numerous difficulties. First, there
can be a mismatch between the level at which the user wishes to express the intentions and the
level that the system requires. Second, even apparently simple tasks can require considerable
levels of intentions and sub-intentions, and the person's short-term memory may become over-
loaded, leading to confusion and error. 4 Finally, there can be difficulties in the evaluation
stage, especially when the results ar not as expected. Here the problem is to determine at
what level the mismatch occurs. An example from a program on our system illustrates the
problem. I wish to display the contents of a file on the screen. I execute the appropriate
display program and it works fine. However, when I try to perform one of the options of the
display program, the program collapses most ungracefully, and then displays this message on
the screen: longjmp boch." core damped. What is a "long-mp botch?' Why am I being told this?
Of what use is this information to me?

The message was obviously written by a conscientious programmer who perhaps thought
the situation would never arise, but that when it did, it would be important to tell the user. s

One problem with this message is that it is presented at the lowest level of program execution
whereas I am thinking at a fairly high level of intention: I want to change what material is on
the screen and want it either to be done or to see a message telling me that it can't be done, in
reasons relevant to my level of thought. Longimp botch is not the level at which I am form-
ing my intentions.

Remember the earlier example of attempting to reformat the paper. Suppose the end
result is not satisfactory. Why not? The reason could lie at any level. Perhaps the run-off was
not carried out properly; perhaps the change of .pp to jp was not done properly; perhaps that
change did not properly perform the 'block paragraph' formatting; perhaps 'block paragraph'
is not what is required to satisfy Intention. There are many places for error, many places
where intentions could fail to be satisfied. If the operation were carried out manually, one
step at a time, then it would be relatively easy to detect the place where the problem lies. But
in many situations this is not possible: all we know is that the intention has not been satis-
fled. Many of us have experienced this problem, spending many hours "fixing the wrong part
of a program or task because we did not have the information required to judge the level at
which the problem had occurred. The question, however, for the system designer is: what

information is most useful for the user?

4. A number of 'dips' of action occur for this reman, wher the peona loe track of the higher-order intention but
continues to perform the actions associated with the Iower-ofdr ones. The result is to perform some action, only to
woader why the action is being done. When the lower4sel actions ae completed, there might no longer be any
trace of the originsting intention/action (an eample from my collection: walk across the bone to the kitchen, open
the refrigerator door, then say 'Why = I here?: Norman, 1931).

S. It is from this and related experimncm that I formulated the rule: propammen should never be allowed to com-
_% mucate with the user. Good software design, I am convinced, an only come about when the part of the progpm

that communicates with the user is encapsulated a a separate module of the proram, written and mmntained by an
interface designer. Otber parts of the pro.ram can communicate only with eacb other and with the interface
module--moat definitely mv with the user. See Draper and Norman (1984).

21



Norman is Stages and Levels

The question is very difficult to answer. For the system programmer who is trying to
debug the basic routines, the statement longjmp botch might be very useful--just the informa-
tion that was needed. For me, it was worthies and frustrating. A statement like System dif-
ficuies: forced to aor the dlspiu comrisvmd might have been much more effective for my pur-
poses, but rather useless to the systems programmer. The problem is not that the error message
is inappropriate; the problem is that sometimes it is appropriate, other times not.

One solution to the levels problem is to know the intention. If the program knew it was
being used by a person who only wanted to wee the files, it could make one set of responses. If
it knew it was being used by someone trying to track down a problem, it could make another
set. However, although knowing user intentions and levels often helps, it does not guarantee
success. In my studies of human errors I have found numerous cases where knowledge of the
intention would not help. Consider the following example:

X leaves work and goes to his car in the parking lot. X inserts the key in the door,
but the door will not open. X tries the key a second time: it still doesn't work.

V Puzzled, X reverses the key, then examines all the keys on the key ring to see if the
correct key is being used. X then tries once more, walks around to the other door
of the car to try yet again. In walking around, X notes that this is the incorrect car.
X then goes to his own car and unlocks the door without difficulty.

I have a collection of examples like this, some involving cans, others apartments, offices, and
homes. The common theme is that even though people may know their own intentions, they
seem to tackle the problem at the lowest level, and then slowly, almost reluctantly, they pop
up to higher levels of action and intention. If the door will not unlock, perhaps the key is not
inserted properly. If it still won't work, perhaps it is the wrong key, and then, perhaps the
door or the lock is stuck or broken. Determining that the attempt is being made at the wrong
door seems difficult. Now perhaps the problem is the error messages are inappropriate: the
door simply refuses to open. It would be better if the door could examine the key and
respond "This key is for a different car." Can programs overcome this problem?

T1his paper is intended only to introduce the ideas that there are stages of activity, levels
of intention, and tradeoffs among the solutions to the problems of human-user interaction.
As the saying goes, more work is needed. But if that message is understood, then the paper is
successful. My goal is to move the level of study of the human interface up, away from con-
centration upon the details of the interaction to consideration of the global issues.

References

Bannon, L., Cypher, A., Greenspan, S., & Monty, M.L. (1963). Evaluation and analysis of
users' activity organization. In A. lands (Ed.), Proceedings ty the CHI '83 Conerence onI. Hunan Factors in Computing Systens. New York: ACM.

Draper, S., & Norman, D. (1984). Software engineering for user interfaces. Proceedings of
the 7th International Conference on Saftwre Engineerinag. Orlando, FL.

4b.



IV

Norman 16 Stages and Levels

Johnson, W. L., Draper, S., & Soloway, E. (1983). Classifying bugs is a tricky business.
Proceedings of the Seventh Annual NASAGoddard Softwae Engineering Cooference. Bal-
timore.

Norman, D. A. (1981a). Categorization of action slips. Psychological Review, 88, 1-15.
-..

Norman, D. A. (1981b) A psychologist views human processing: Human errors and other
phenomena suggest processing mechanisms. Proceedings of he International Joint
Cor(erence on Artificial Intelligence, Vancouver, Canada.

Norman, D. A. (193a). Design principles for human-computer interfaces. In A. Janda
(Ed.), Proceedings of Mea CHI '83 Coo(erence on Hum-Facters in Computing Systems,
New York: ACM.

Norman, D. A. (1963b). On hwnai error: Misdiagnosis ad fafiwe to detect the misdiagnosis.
Talk presented at the GA Technologies Inc. Workshop on Decision Processes in
Operation Planning and Fault Diagnosis, La Jolla, CA.

Norman, D. A. (1964). Four stages of user activities. In B. Shackel, (Ed.), INTERACT '84,
First Conerence an HumawComputer Interaction. Amsterdam: North-Holland.

Rumelhart, D. E., & Norman, D. A. (1982). Simulating a skilled typist: A study of
cognitive-motor performance. Cogntive Science. 6, 1-36.

4, -.

'u,

".

4.'



.'1.7

Draper 19 Expertise in UNIX

THE NATURE OF EXPERTISE IN UNIX

Stephen W. Draper

This ptper discuses the ntowe of expertise In UNIX. arguing tu in certain senes of the
word there are o experts. Tie coneqpes for interface desis of revisi the
c-ommoneme notios of expertise, psc du1 y with respect to desipning help f aclities,
are then discussed.

Introductim

A frequently encountered common-sense view holds that in a computer system such as UNIX
there are experts and novices, experts being people who know more and can do more than
novices. As novices learn, they gradually become expert. The supposition is that experts know
things that novices do not, while the reverie is not true. A common sgwstion built on this
view is that a system can be tailored either for novices or for experts but not both, or that a
system should have two modes, one each for novices and experts. An associated assumption is
that novices need more help than experts and will make more use of amy help facilities pro-
vided.

This paper will argue that the above view is wrong: that this apparently common-sense
notion of "expert' does not provide an adequate analysis of the nature of expertise in systems
like UNIX, and hence does not provide a sound basis for designing help facilities.

Command Usan Data

Over a period of 8 months data on the commands used on our system were collected:
specifically how frequently each person used each command. The main measure extracted from
this was each person's command vocabulary- the number of distinct commands that that per-
son used at least once. The aspect of expertise reflected in this measure does not fit in with
the above simplistic picture.

The Data Set

The data was collected over 8 months from a total of 94 people. They had about 570
commands available to them (the precise number fluctuates a little as new ones are added), of
which only 394 werecorded as used at least once by at least one person. The largest vocabu-
lar recorded for a single individual was 236. The data recorded the usage of our lab computer

&Submitted to the Fiet [PIP Confenece on Humna.Copuinptnter lut c io. (London, September 1984).

7. UNIX is trademark of Bell Labomtorim. lhe comments in tldi paper refer to the 4.1 BSD veio. deveoped at
the Univesity of Califofnia. Berkdey.

.. V
,¢¢ ,,e" ', V'0,' /"' o . , ,- ,, . ', " "., . . t " ..'- ... . ' .- ,.- ,". .'," *.,,,',-'.,.."-*."." .-. .- = " .-",,,'.,



Draper 2D Expertise in UNIX

whose user population includes programmers, psychology researchers (faculty, postdocs, and
graduate students), and administrative stafi. Most users use (some of) the word processing
facilities, a minority use data analysis facilities, another overlapping minority use programming
facilities. The computer ran 4.1 Berkcley UNM, and in addition a substantial set of locally
developed programs.

Its basis was the UNIX system accounting facility which records every process run and
who ran it. Nightly this is collapsed, and for this purpose a cumulative record was created
equivalent to a 2-D matrix of individuals versus commands with each cell recording the number

4' of times that individual had used that command since the start of record-keeping.

This provides an easy method of mas data-gathering, but as we shall see there are a
number of drawbacks inherent in this source of data which limit the conclusions that can be
drawn from it. The first is that it records UNIX processes run, not user commands issued.
Thus it records some processes that the user is unaware of having started (since they are called
indirectly). This was largely corrected by a filter to eliminate those processes known to be
called indirectly in almost all cases (e.g., the mail delivery program, as opposed to the program

4.S providing the user interface to the mail system) and also any processes not publicly available
(e.g., private programs). This probably correctly eliminated over 90% of programs called
indirectly at the cost of losing rare cass of individuals calling these programs directly.

A second consequence of recording processes not user commands is that this source of
N data misses all use of the 51 commands built into the sheil (command interpreter) and not

implemented as separate programs. There is renaon to believe that this does not distort the
trends in the data on which the arguments below depend, even though the built-in commands
Include some common commands, because the use of the built-in commands is typically tied to
patterns involving recorded commands. For instance, the most common built-in command is
probably ed' (change directory). New users will not use this at first because they will not at
first have created any subdirectories to move among. When they do begin to use it, they will
also almost certainly begin to use the command *pwd' to show which directory they are
currently in, and that is not built-in. Thus the overall trends and relative vocabulary sizes from
this data are probably representative.

Another potential problem with estimating command vocabulary from such data is that a
user might not use all the commands they know within the period observed. For instance, a
researcher would only use data analysis tools in bursts at a particular stage of research. The
long period of data collection (8 months) should however have compensated for this to a great
extent.

* Another problem is with data from the *superuser.w There is a special privileged user ID
(the "superuste), which is used both to run system utilities and to give special privileges to one
or two users for fixing up problems. Thus the system administrator (an "expert') runs part of
the time under this MD. All data relating to this MD was discarded to avoid attributing
automatic utilities to a person. The danger is that a considerable part of the expert's coin-
mands were also discarded. Since the expert however also runs under his own personal ID
much of the time, it is probable that the size of his command vocabulary is accurately recorded
even though the frequency of use of each command is underestimated.



Draper 21 Expertiac in UNIX

Finally there is the problem of equating command vocabulary with expertise. Later in
this paper the question of the nature of expertise is discussed. For now, it seems reasonable to
take vocabulary as a good, though partial, indicator of expertise. It is especially appropriate in
considering the help individuals may need which is so often information about the existence
and name of commands.

Observations

The data make it clear that there were no experts on our system in the sense of individu-
als, who used all the commands. There were a substantial number of commands never used by
anyone (about 175). Furthermore, of the 394 commands used at least once by someone, the

% ~highest individual vocabulary observed was 236 or 6096 of the total.

Next, the common-sense division of all users into novices and experts implies a bimodal
distribution of expertise (here equated with the number of commands known) of which there
is no trace in the data. Table 3 shows the number of users in each division of vocabulary size.
There is a fairly smooth distribution of vocabulary size across our user population with perhaps

a single slight peak in the lower half around a vocabulary size of about 45. The expectation of a
bimodal distribution is of course a naive interpretation of the categorization, but note that the
proposal to have a system with two levels of friendliness for the two levels of expertise is naive
to just the same extent.

V . A more important observation comes from examining the extent to which one uses
vocabulary overlaps another's. The common-sense model of expertise in which there is a single
body of knowledge to be learned, and an expert simply knows more of it than a novice, would
lead to the set of commands used by a user with a small total vocabulary (a novice) being a
subset of the set used by a large vocabulary user. (We can call this the strict subset model of
vocabulary knowledge.) This was not observed: on the contrary, each user's knowledge over-
laps other users'. A useful image that con"ey a picture of the situation is to imagine a Venn
diagram of the sets of each user's commands looking like a flower with radiating petals: over-
lapping all others in the center, completely non-overlapping at the periphery, and with partial
overlap of nearest neighbors in between. While users vary a lot in the size of their vocabulary
(the petals are of various sizes), small users show the same pattern as large users: they use one
or two commands used by almost all other users, one or two that no-one else uses, and in
between commands with all degrees of shared usage. In fact, as far as I know, you cannot use-
fully plot the data as a Venn diagram because there is no way to plot the commands as points
on the plane such that each usces set can be plotted as a simple closed curve (e.g., an ellipse).
The important features of the distribution can however be perceived by considering the follow-
ing.

If knowledge of commands were completely randomly distributed then the number of
users per command would be approimately constant for all commands (a normal distribution
around the mean of 2.4 users per command). Clearly this is not the case (see Table 4). On
the other hand neither are commands acquired according to the strict subset model so that a
larg vocabulary always contains the commands in another user's smaller vocabulary. If that
were so then the largest individual vocabulary (236) would be the same as the total combined

77".



Draper 22 Expertisc in UNIX

Table 3

Number of Users per Command

Number of Users Number of Commands

per Command in this Division

100-91 2
90-81 8
80-71 12
70-61 13
60-51 12
5.D41 24
40-31 24
30-21 34
20-11 70

10-1 195

I

,%

- !.
. -5:'). , € . ' , : : , ' , ' , ' / / , . . , . . . , - , ; . . . ' . . , . ' . . . . . . . - . . . . . - . . . . , .. . . . . . . , , .

5.. - 7 " - , ,, ' f , . t ' ' ' " ' ; ' ' - . " , " ' ' '



Draper 23 Expertise in UNIX

vocabulary of the population (394).

In fact a substantial number of people know commands that no one else knows (whereas
that would only be true of the largest vocabulary user in the strict subset model). There were
40 commands which only 1 user knew, and 18 individuals (rather than 1) each knew one or
mome of these idiosyncratic commands. Similarly, taking the group of commands used by S or

* * fewer people, theme were 128 such commands and 64 individuals with vocabularies spread evenly
from the maximum (236) down to 25 each used one or more of them, but obviously the strict
subset model would predict exactly 5 such individuals (those with the 5 largest vocabularies). In
other words two thirds of the population used at least one "rare' command.

Thus the picture suggested by this data is that instead of there being a common body of
known commands with users differing in how much of it they know, each user is an expert -

or rather specialist - in a different comner of the system, even though the quantity of
knowledge at least as measured by the number of commands certainly varies a lot. This is con-
sistent with the familiar concept of specialists - that expertise is not concentrated in any one
person but is distributed throughout the community, so that the doctor (medical expert) is not

'.4, the expert on, say, the law.

This suggests that a more fruitful way of viewing a system's users is that they are all in
essentially the same general situation of knowing some things and being ignorant of (and there-
fore sometimes needing help with) others. It follows that although a given individual in a par-
ticular context may need either complete, partial, or no help depending on their knowledge of
that part of the system, the kind of help needed will not be a stable characteristic of that indi-
vidual, i.e., that from the point of view of providing help, 'expert" and wnoviceare labels for
contexts not for individuals. Thus any scheme, such as Schneider (1982) proposes, for clasify,
ing different levels of user skill, should be not applied uniformly for a given user but made
specific to the command or context in question.

A Help for Users

Scharer (1983) points out that users in general typically don't use manuals: at most they
use one-sheet summaries, and they prefer to consult the local 'expert.' (We are now consider-
ing another aspect of the notion of expert - someone others consult.) Often this expert does
not know the answer but does know how to use the documentation in order to extract the
answer. This not only confirms the idea that experts do not know everything that even novices
want to know, but suggests that the help facilities provided with the system (manuals) are

- , more heavily used by experts than by novices. This is borne out by informal observation on
our system - the resident expert is indeed by far the heaviest user of the printed manual,
while novices seldom use it, and roughly speaking manual use is proportional to knowledge of
the system and not inversely proportional as might have been expected. We also found this
pattern in the data: we compared the number of calls each individual made to the on-line
manual (the "man,' 'apropos," and "whatis programs) with their command vocabulary: the
correlation was positive with a value of 0.72.

It might be argued that this shows the effectiveness of the manuals: that those who use
the on-line manual expand their vocabulary. However, in a given period only learners should
have both high manual use and a high accumulated vocabulary; people who already had a large
vocabulary at the start of the observation period would not be expected to show high manual



Draper 24 Expertne in UNIX

Table 4

Users' Vocabulary Sizes

Vocabulary Number of Users

240-231 1
230-221 0
220-231 0
210-201 0
200191 1
190-181 2
180-171 2
170-161 5
160-151 1
150.-141 5
140-131 4
130-121 2
120-111 6
110-101 5

100-91 4
90-81 6
0-71 5

70-61 8
6D-51 10

50-41 4
40-31 10
30-21 7
20-11 3

10-1 3

o4.

*",t.. ..4 .".'.".v. ". "'* " "'..',. "* " " "VP," "-".' *?.' "' " - -"-". ..., """ ""."" .', "



Draper 25 Expertise in UNIX

use. The correlation suggests another cause at work, or alternatively that most high vocabulary
users were 'learners' in this period.

This pattern may in part be because the people whose job it is to solve problems others
cannot solve, and to bring into effective local use new facilities which were hitherto non-
existent, non-functioning, or unknown locally, ame naturally those with the most knowledge;
yet because their job is to tackle new things, naturally they need 'help' from documentation.
These are the people who in fact therefore need the most help from the system at least in the
sense of new information of the kind traditionally enshrined in documentation: system
designers should presumably therefore be tailoring a large part of the help facilities for them.

An Interpretation

The above should be enough to show that a more careful analysis is called for. In fact
every case is different - a unique combination of task and user experience, where that experi-
ence has a number of relevant components that cannot be properly compressed onto a single
dimension. Thiese components include (i) the user's knowledge of using that system for that
task, (ii) his knowledge of that task independent of that computer system, (iii) his general
knowledge of that computer system, and (iv) his general knowledge of other similar system.
The kind of help most appropriate will vary with all these components.

'9.' The simple observations and data gathering described above thus lead to a quite different
(t.zh in retrospect perhaps not so surprising) view of user knowledge ad expertise than the

one based on the common-sense notion of an expert. It seems that in designing a system (and
especially its help and documentation facilities) to match the expertise of its users, one should
expect a user community, no matter what the overall expertise of its members, to contain users
in all states of knowledge of any particular command or area, and furthermore that it will not
be possible to predict a given user's expertise in one area on the basis of their overall
knowledge of the system. All users will be experts in relation to some parts of the system,
novices in relation to other areas they have never used, and intermediate elsewhere.

T"his is not to say that there is no sense at all in which individuals may acquire a general
expertise in a system. Scharer's observations suggest that one important aspect of general
expertise is the ability to extract information from the system and its documentation rather
than relying on other people, as is supported by our data on the use of the on-line manual:
such people have 'manual dexterity' in Pat Wright's (1983) phrase. Another factor we may
expect is a growing understanding of the system in general which makes it progressively easier
to understand new things. This may be seen either in term of mental models - of acquiring a
more accurate knowledge of the underlying principles and components of the system - or of

'w acquiring larger quantities of experience which simply raises the chance of any new problem
being soluble by analogy to a previous one. In this generalized sense there is doubtless still a
tenable concept of expertise which would carry some predictive power about the probability of
a given user being able to solve some problem. Nevertheless it remains true that whether a user
needs help depends on the combination of user and command and is not a property of the user
alone. Thus it seems advisable for every command to provide support for three cases - for
those who have never used it, those who have only used it occasionally, and those who are fain-

d iiar with it - without making assumptions about their general level of knowledge.



Draper 26 Experti.se in UNDM

With the above in mind, we can now argue that the pattern of expertise that was
observed is what in fact you would expect in a large system (one with many commands), partly
because different users have different tasks (specialization), and partly because for many tasks
there will be more than one way to do it and different people pick different ones. Thus in a
system with a small command set you would not expect to see it, but in other large systems you
would. One such is the UNIX editor "vi,' which has about 110 commands (cf. the approxi-
mately 600 UNIX commands at the shell level). Data was collected on its use from the same
population, and a qualitatively similar pattern of command use was seen, especially when the
use of compound commands is examined (e.g., 'dw" for delete-word is a compound from the
delete command, and the move-to-next-word command).

Conclusion

Command sets as large as in our UNIX system or in the vi editor are just too large for
anyone to learn in their entirety, and there are not strong constraints common to all users on
the order in which commands will be learned. Thus you should expect specialization not
expertise at this level of knowing commands. At a more general level of knowing how to find
things out about the system, the common-sense one-dimensional notion of expertise is more
nearly applicable. This fits Scharer's experience; it means documentation is used most by
experts. This corresponds with the use of library indexes: although many readers use them a
bit, their heaviest users are librarians, and if a user has trouble they ask a librarian to help
them with the index; they do not expect the librarian to know the answer from memory. Thus
if someone says they 'know UNIX' or spends some time 'learning UNIX" you should not
expect them to be familiar with the whole command set - probably not even half of it. You
might however expect them to know how to find the answers to questions about the system.
Bear in mind though that one of the most important things to know is whom to ask about a
given question - who the local expert is on that area of UNIX - and that is not something
usually taught or documented.

In summary: there are no experts in UNIX in the sense of people who know all the com-
mands. While there are certainly some users with a larger command vocabulary than others,
experts' real skill seems to lie less in familiarity with the whole command set than in discovery
skills that allows them to find answers to the questions they cannot answer from memory.

- .. These skills include knowing how to get information by experimenting with the system, ability
to use other sources of information such as source code, and knowing whom to ask. (All

;- ..* these skills, including the last, are observed in the highest degree in our local consultant, even
though he is the one other people ask.)

There are two possible conclusions for designers from this: either write the documenta-
tion for experts and expect novices to get their help from local experts (i.e., accommodate to
the status quo), or concentrate on making the documentation instantly useful to novices (i.e,
usable without the acquisition of a lot of expertise in using the documentation) and perhaps
give tutorials and other support for the methods of information acquisition listed above.
Furthermore the designer should be ready to meet varying levels of expertise (say novice, inter-
mediate, expert) when providing help, and not expect these levels to be properties of individu-
als across all commands, but to be, for a given individual, specific to at least a subject area and
probably to particular commands.



:- 7-7

Draper 27 Expertise in UNIX

References

Scharer, L. L. (1983). User training Less is more. Datmnation, 29, 175-182.

Schneider, M. L. (1982). Models for the design of static software user assistance. In Badre
& Shneiderman (Eds.), Directions in human computer interaction (pp.137-148). Norwood,
NJ: Ablex.

Wright, P. (1983). A user-oriented approach to creating computer documentation. In A.
Janda (Ed.), Proceedings of the CHI '83 Coiference on Human Factors in Computing Sys-
terns (pp.11-18). New York: ACM.

.%

0 .

*'j 4

-',..-

"a3

-A

/.

. . .. -.. ,-.............. ...**-*;..*., .'.4 ( % ;¢ ¢ ~ .. ' . - .. ; -t. ?:N ¢' '..¢ .. .,-



.-. 07 9 .1 2 _ 1 - - - - . - - - .

Owen 31 Users in the Real World

USERS IN THE REAL WORLD

% NDavid Owen

Based on the premise that people demonstrate a considerable degree of competence at
formulating and achieving goals In the world, this paper seeks to identify and examine the
relationship between the crucial characteristics of the real world and inherent or

*' . i. acquired human skills that support this competence. in order to improve the human com-
puter interface. Aspects examined include a "naive physics" of compaing and the recon-
struction of propositionually held information. a

Introduction

Much of the current work on human-machine interface design starts with an analysis of
* difficulties users experience with specific existing software systems, e.g., operating systems and

editors. This paper explores a complementary approach based on the premise that we demon-
strate a considerable degree of competence at formulating and achieving goals in the world

$_ , which does not readily transfer to a computing environment. The task is to identify and exam-
' ine the relationship between the crucial characteristics of the real world and inherent or

acquired human skills and motivations that support this apparent competence, with the aim of
providing the same kind of support in a computing environment.

Two aspects are examined here. The first is concerned with the formulation and achieve-
ment of explicit goals, the kind which are generally inferable from people's actions and the
second seeks to emphasize the importance of non-explicit meta goals, evidence of which is less
apparent. An inherent danger in this kind of approach is that of limiting the exploitation of a
new tool/medium to existing concepts, without exploring new ones. The intent here is to iden-
tify and acquire an understanding of issues at a level which does not evaporate in the face of

'/ new ways of structuring activities and is not bound to existing or anticipated hardware.
5:

Formulating and Achieving Goals In the Real World

People somehow become acquainted with a range of tools/agents, how to mobilize them,
and how to formulate goals in a way which relates to the means of achieving them. This some-
times involves perceiving existing situations, deciding on desirable changes, setting up precondi-
tions for the changes, and then uttering the appropriate incantation to invoke the tool/agent

w*(Norman, 1984). Alternatively and less precisely, partially understood current and desired states
.0..,- may motivate the heuristic choice of some strategy, which is believed to lead in roughly the

4... 0., right direction. In doing this people draw on a whole range of skills, memory aids, and in

. T e idem result from interactions with the UCSD Humua-Machine Interaction project, including Liam Bannon,
Allen Cypher. Steve Draper, Donald Norman. Mary Riley. and Paul Smolenaky. and with Brenda Laurel of Atari.
Sondra Buffett and Nancy Casey helped in improving the presentation. Paper submitted to the First [FIP Confer-
once on Human-Machine Interaction (London, September 1984).

e."e



Owen 32 Users in the Real Wor!d

particular, input to the total range of senses. Furthermore the skills seem well adapted to the

--? cues and representational modes of the real world.

,. .-. So what is it about these skills and the real world that facilitates this apparent com-

petence, and to what extent can they be exploited equally well in an interface?

The 'Naive Physics' of CompiinS

People acquire a degree of knowledge of the "naive physics of the world (Hayes, 1978);

approdmately how physical cause and effect mechanisms work, and there is a growing field of

research concerned with establishing the primitives of this physics. DiSessa for example

(diSessa, 1983) uses protocols to probe a naive subject's understanding of "sponginess," expos-
ing the degree to which it is sufficient to explain some everyday phenomena and its limitations

on confronting less common situations. Naive physics provides a basic understanding of what

may or may not be possible, which is exploited in many situations.

, It is powerful in determining the plausibility of proposed combinations of tool-object-

outcome. For example, it allows the user to infer the relative appropriateness of a

sponge and a hammer for a task.

0 It supports the innovative use of tools: a screwdriver can be used to open a tin of

paint.

0 It supports short cuts: having understood the essential procedures laid out in a recipe,
many people will follow it only as is necessary to get the main effect.

0 It is particularly important in being able to cope when thinp go wrong: when water
does not emerge from the end of a hose pipe, most people are capable of generating
some debugging strategies.

* "Similar situations are to be found in the computing domain but require a very different naive

physics.

-0 In which contexts, for example, is it appropriate to use *rm" to remove something, and

is it like removing a spot from a window or removing a chair from a room? Is "rm" or
my" or mouse movement plus three clicks the appropriate way of changing the loca-

*tion of a word in a file and can it also be used, say, to delay the execution of some

command for ten seconds?

0 Some computing systems, like UNIX, positively encourage the innovative combination

of their facilities.

0 When lengthy, perhaps menu-based, interactive interfaces become irritating rather than

supportive, it is desirable to short cut the prescribed procedure and issue just those

commands which are relevant to the immediate task. To do this one must have an

understanding of what is relevant.

0 It is also the case that thinp occasionally go wrong, and one then needs some capacity

to analyze why.



-77775- 7 *77

Oven 33 Users in the Real World

The question then arises as to what might be the important notions in a naive physics of
computing. One reason for addressing this question for the real world is to be able to present
new information in a way which facilitates the transition from novice to expert (diSessa, 1983).
But in the computing domain there is the opportunity, at least to some extent, to tackle the
problem in another way, that is to induce in the user a naive physics which will be more easily
extendible. So an equally relevant question might be how best to help people acquire that
knowledge.

The physics of computing. T1his deserves a longer examination than is possible here, but
lets us consider one important aspect. The computing domain is one of symbols and so it
seems the essential 'physics" is at least in part that of symbols and their manipulation rather
than of the objects which are represented. People appear to be familiar with symbolic
representations and their limitations in the world. Only in cartoons do people knock nails in
with a photograph of a hammer but it is accepted that a photograph gives a reasonably reliable
idea of shape and color. Similarly, the fact that one can do things to symbolic forms which are
not possible on the real thing is not unknown. It is reasonable to cut out the picture of the
hammer and put it in a collage positioned over a picture of a nail, or declare that the saltcellar
is Paris! What is not familiar is the degree to which the use of symbols can be exploited in
new domains. It is possible, for example, to represent and manipulate tiny patches of a single
letter in a font editor. Even the means of seeing the symbols is indirect; there is no absolute
guarantee that what is evident on the screen is in any other sense there. 9 This substantial
difference between everyday use of symbols and their use on a computer makes it hard to infer
the similarity.

* Hand in hand with the symbols explosion goes the capacity to break down hitherto cle-
* * mental operations on symbols and, with almost limitless flexibility, combine them into new

compound actions. A simple example apparent in studies of editors is the difficulty some
people have with the process of inserting text in a line where there is apparently no apace
(Riley and O'Malley, 1984). It exposes the limitations of appealing to real world analogies
without revealing the essential differences in the physics of the domains. Not only is it neces-
sary for the user to grasp the possibility of decomposition and understand the new range of
elemental operations but also to comprehend and accept a program designer's decision as to
what constitutes an improved combination. to On the one hand this flexibility exceeds people's
experience in that it is available in new domains. To return to the collage example, it is not
normally possible to devise a tool which will, in one action, both make space for and position
a picture of a thumb between the hammer and the nail. On the other hand, it falls short of
people's experience of a domain in which they do make heavy use of symbol manipulation,
namely that of natural language. In this domain one can convey the same information in many

9. to *iosert' mode in the Ai editor one can delete characters just entered without leaving that mode. hecursor
moves back over than and they are qostl to the editor but they are not removed from tbe screen.

10. Even a model requires some understanding of the nature of the objects involved which might limit the value of
*.I.~.'its use in isolation. It could be regrded as part of a bootstrapping process.

*5~ %.* .



Owen 34 Users in the Real Worid

different ways and to a large extent rely on the hearer's shared access to the world. 1

I 'erring a naive physics. Two related conditions which seem to be important may be
inferred from analyses of naive physics by diSessa (diSessa, 1983) and McCloskey (McCloskey
et al., 1983). The latter describes and analyzes the commonly held misconception that an
object that is carried by another moving object (a person running with a ball) will, if dropped,
fall to the ground in a vertical straight line. Their hypothesis is that the misconception results
from a misperception of events in the world caused by an inappropriate use of reference
frames. However, it is clear that people can straighten out similar misconceptions without for-
mal physics training if there is sufficient motivation. Spear fishermen for centuries have been
able to cope with position distortions caused by the different refractive indices of air and
water. For most people, the straight line misconception does not interfere with any common
goal. But in the case of the fisherman, the absence of a fish on the end of the spear is unambi-
guously a failure of some understood and explicit intermediate goal towards eating. This
would indicate that in the computing domain it is necessary to expose to the user the implicit
sub-goals of a compound command, at least in one form of that command. For example, in the
UNIX operating system there is no command which will simply create an empty file. Invoking
an editor on a non-existent file will usually succeed in creating it and, amongst other things,
will assign to it some protection status. However, the editor gives no indication that this is
happening and in general there is little evidence that a complicated protection structure is
being automatically developed until one attempts to transgress it. The intent here is not to
reiterate the "more meaningful error messages" chestnut, but to suggest that the user be allowed
to absorb the notion of (in this case) protection by making its presence as a sub-task apparent
in non-error situations. 2

In diSessa's (diSessa, 1983) probing of a subject's comprehension of elasticity, it was
apparent that a major stumbling block to extending the understanding of how a tennis ball

could bounce, to how a steel ball-bearing could bounce, was the fact that the elastic properties
of a tennis ball are visible, whilst normally those of a ball-bearing are not. In fact the inter-
viewer, in attempting to convince the subject of the similarity, points out that with strobe pho-
tography the squishiness of a ball-bearing could also be seen. The argument is again one for
visibility. To fully exploit a person's capacity to infer a useful naive physics, as much as possi-
ble should be made apparent of both the nature of a procedure and the properties of the
objects involved. 13

None of the above is intended as an argument for making computing systems mimic their
real world physical counterparts. On the contrary, the use of icons that look like filing
cabinets is of questionable value if associated concepts are not supported.

11. Witness the difficulty people have with understanding how blindness or deafness affects the shared accem a-
sumptions. Mlind people are often shouted at, and deaf people guided around obstacles.

-4

12. An approach being tried at UCSD (Draper. unpublished) is an interactive version of a general file creation pro.
pam which makes explicit the attributes associated with a file including its protection by requesting them explicitly
and reporting impossible combinations of options with reasons for the inappropriateem.

13. The problem here is that few of the physical properties that distinpish objects in the world are inherent in cow-

piater objects (e.g., different file types). To arbitrarily assin them may lead to confusing inconsistency. More
relevant properties are implied by the operations it is sensible to perform on them (e.g., print, execute). At the very
least this difference could be made clearer. Some ways of doing this, short of operating system rn-writes, are being
explored at UCSD in a simple editor and a "notepad' system (Cypher, unpublished).

d'I,

4q'

'S-.,.Z!S,.S,, 2....



Owen 35 Users in thc Real World

Representational Modes

There is a range of ways in which people can sense and subsequently rcpresent the world:
sight, sound, touch. Much of the state of the world is permanently apparent in different,
often analogical, representational forms which people trade on heavily to distribute the load of
comparing, remembering, and understanding. In the computing domain we are essentially
reduced to one perceptual channel to sense the nature of, and interact with, the encapsulated
world. One is not subjectively conscious of having to translate the softness of a sponge and
the hardness of a nail to a different representational form to perceive the mismatch. For an
equivalent operation on a machine one has to know or be given a quantized textual description
of the relevant properties of an object and an agent in order to assess the appropriateness of
their combination.

It can be seen as an inevitable consequence of the compression of the world into a lim-
ited space to be viewed propositionally through a small window. It is a powerful property of
the computing medium that a large amount of information can be held in a small space, but
that is incompatible with the space-taking analogical forms of representation which it is possi-
ble to make use of in the real world. In this respect computers and the world stand at dif-

* ferent extremes in the tradeoff between compactness and multi-dimensional accessibility.

There is a challenge therefore to make a shift in this tradeoff, to relieve the user of the
overwhelming emphasis on propositional forms of representation and reconstruct the informa-
tion so held into more immediately accessible forms. Mice and larger bit-mapped terminals are
undoubtedly useful, but they still represent a preoccupation with improving ways of interacting
with a window on the encapsulated world rather than providing qualitatively different access

-S.1'mechanisms. An example is the notion of location in, and movement around, a directory struc-
v ture. The power of analogical representations of these notions is only minimally exploited, but

imagine a device attached to your workstation which had drawn out on it a plan of your direc-
tory structure, and that on that plan you could physically place and move a counter. The posi-
tion of the counter indicates your current working directory, and moving the counter would be
equivalent to issuing a change directory command via the keyboard. The user would not have
to remember the commands or mouse clicks necessary to change directory, or the exact name
of the directory. Recognizing the position of the counter in relation to the physical charac-
teristics of the pad might make it unnecessary to read the label. Current screen based solutions
require either a temporary change of screen to see your relative position in a graphic represen-
tation or force you to read and parse the directory name if it is permanently displayed. Even
the direct action of moving the counter significantly changes the nature of the interface. It
replaces moving a mouse, in order to move a pointer, to indicate the object on which some
subsequently and similarly indicated action is to be performed. Of course advances in touch
sensitive '~flat' screens may allow a more sophisticated implementation than the one suggested
above. The argument here is that there is a particular property of the world which people

.5 exploit, that future developments might explore.

AC422



Owen 36 Users in the Real World

Knowledge Acquisition

Having constructed an environment full of wonderful facilities, how are users going to
find out about them? There are many sources of information for the motivated seeker both for
a computer interface and in the rest of the world. However, much of the information about
tools/agents in the world seems to be acquired at times when it is not being directly sought and

may not be relevant to any immediate goal: billboards, T.V. advertising, or watching other po-
pie without necessarily being in an accepted student/teacher situation. One becomes aware of
the facilities with almost no special effort, but knowledge of their existence may influence
how some future goal is achieved or to the extent that goal generation is 'tool availability
driven, whether they are even generated. Even if a facility is known and used, seeing it used or
described by someone else can increase one's own understanding of it. There is little exploita-

€. +',, tion of this kind of dissemination of information in most computing systems and although
many possibilities may spring to mind, the exact nature of this kind of knowledge acquisition,
and the conditions under which it is acceptable, rather than irritating, are not obvious.

A pilot study addressing this issue has recently begun at UCSD. It currently takes the
form of a program which users may call as a displacement activity, which will display on the
screen a small piece of information about the local computing environment. It may also be
called with an argument which serves to confine the information to a particular subject (e.g.,
vi, an editor and C, a programming language). To try to establish the kind of information it is

4 useful to present, users are asked to indicate whether they find each instance of interest. 14 A
simple editor is being developed which will allow people to contribute their own database
entries, and it is intended to make the system self-maintaining by allowing user responses to
censor the contributions. 15 Evaluation of the facilities will be based on a log of its use, com-
parison of the usage of several existing commands before and after its introduction, and user
comments.

HMdden Godls and Explicit Goals

This section is an attempt to push the same examination of the real world for a contribu-
tion to a more amorphous aspect of what makes one interface better than another. There are
several established ways of assessing the effectiveness of different interfaces, e.g., ease of learn-
ing, frequency of mistakes, effective throughput. But these may miss a range of important
characteristics which contribute to a user's subjective feeling on using the interface. We
appear to have a range of non-explicit emotional and aesthetic requirements whose satisfaction
is rarely the main objective, but which influence the route taken to achieving a more concrete
goal. These 'hidden" goals are difficult to identify but their influence can be seen in some
kinds of behavior. For example, the motives behind travelling to work by the scenic route one
day and the highway another are hardly explained by "needing a change of view."

14. So far, surptringly few people specify a subject, although those who do predictably have a highes "interest hit
race." (Eo% vs. 40% overall). Also whether people stop uing the facility does not seem closely related to the success

of their first few uses.

15. Although some pieces of information have been very popular, others not at all. it is not yet cleat what the crucial

differences we, a&d so some kind of self-censoring seem important.
I,

1 '°d



Owen 37 Users in the Real Wond

* . Two extremes in the degree to which explicit goals or hidden goals are being satisfied
occurs in the use of tools and toys respectively. The description of something as a tool (work)
implies that one is most interested in the explicit outcome of its application, and in general
less interested in the means by which it is achieved. For a toy or game although there is often
an ostensibly desired outcome, like amassing gold pieces or scoring points, the main object of
the exercise is to satisfy ill-defined hidden goals almost as a side effect of how the overt goal is
achieved. This sweeping generalization serves to convey a sense of the distinction being used.
From this I want to argue that the subjective degree of satisfaction afforded by two different
ways of doing the same job, or using two functionally equivalent interfaces, reflects the degree
to which they satisfy by side effects, the user's hidden goals.

There is little future in attempting a detailed analysis of the concept of "pleasure,' and
that is not what is being suggested here. The best that can be hoped for is some approximate
classification of behavior patterns that the satisfaction of hidden goals apparently precipitates,

* and attempt to provide the opportunity for similar behavior in constructing an interface.

* As an example consider the behavior exemplified by the use of alternate routes to work.
It would indicate that in spite of the fact that one input device may be optimal for speed and
efficiency for a particular application, it is important to provide functionally equivalent, sub-
optimal alternatives merely for variety. For example, a system which relied heavily on a
amouse or speech input without the provision for performing the same tasks via a keyboard

-~ or a data-pad would not facilitate what appears to be an important aspect of human behavior.

But what lies behind a craftsman's attachment to a particular tool, a golfces loyalty to a
particular driver, or a traveller's preference for a particular travel agent?

Is it that the qualities, capacities, and limitations of these extensions are thoroughly
understood and trusted, that they will not spring surprises? If so then the argument made in
an earlier section for making explicit the consequences of using a computing facility is rein-
forced.

Is it that the tool in the hand of the user acts as a procedural memory? In other words,
the user no longer has to remember a detailed specification of what he wants to achieve, only
that whatever it is, it can be achieved by his use of that tool. It allows the specification of a
desired outcome, and the selection of the means for achieving it, to be collapsed into a single
mental step. If so, then perhaps one program designer's way of carving up the space of possible
activities and providing tools accordingly may be adequate.

Is it that the the tool and its implications for the organization of the domain are a func-
tion of the personality of the user and that every time they are used, the user's own identity or
image is gratifyingly reinforced? (Although this may seem somewhat esoteric, it is a
phenomenon which is exploited everyday in the advertising world.) If this is the case then
there is little satisfaction in being forced to absorb the identity of the program desigmer, how-
ever objectively efficient it may prove to be. Users should be given every opportunity to
modify tools to reflect their own conceptual framework.

'I%



Owen 38 Users in the Real World

* . Concluding Remarks

I have attempted to draw attention to some aspects of the way we interact with the
world, and how they might be exploited to improve interaction with a computer. One direc-
tion indicated by some of these aspects is towards making the user more aware of how things
are done and why they are done that way. A different view holds that the machine should be
developed as an intelligent agent, which will infer a lot about the user's intentions and not

" trouble them with any details. These views are not mutually exclusive, but they do represent a
difference in emphasis which there has not been space to discuss.

References

diSessa, A. A. (1983). Phenomenology and the evolution of intuition. In D. Gentner &
A. L. Stevens (Eds.), Mental models. London: Erlbaum.

Hayes, P. J. (1978). The naive physics manifesto. In D. Michie (Ed.), Expert systems in the
microelectronic age. Edinburgh: University Press.

McCloskey, M., Washburn, A., & Fetch, L. (1983). Intuitive physics: The straight-down
belief and its origin. Journal of Experimental Psychology: Learning. Memory, and Cogni-
tion, 9. (4), 636.649.

Norman, D. A. (1984). Four stages of user activities. In B. Shackel (Ed.), INTERACT '84.
First Conference on Human-Computer Interaction. Amsterdam: North-Holland.

Riley, M. S., & O'Malley, C. (1984). Planning nets: A framework for studying user-computer
interaction. Manuscript submitted to the First IFIP Conference on Human-Computer
Interaction (London, September 1984). Also included in this Techical Report.

.,. *%.

.p. ~.N
2.



OMalley, Draper, and Riley 41 Constructive Interaction

CONSTRUCTIVE INTERACTION:
A METHOD FOR STUDYING USER-COMPUTER-USER INTERACTION

A" Claire O'Malley, Stephen W. Draper, and Mary Riley

In this paper we describe a promising technique for studying human-machine interaction
called Constructive Interaction. We discuss the merits of the technique in theory and in

4. practice and describe briefly two kinds of pilot studies employing it. Constructive
Interaction was developed by Naomi Miyake (Miyake. 1982). It consists essentially of
recording sessions with two participants who are discussing some topic which they do not
fully understand, in the hope of sharing their knowledge and arriving at a fuller under-
standing. Miyake was interested In what was revealed about the underlying schemas of

, the participants and how new schemas can originate in an interaction between two people.

We are interested in what this basic situation can offer for the study of HMI. 16

Introduction

The technique is a descendant of protocol studies in which subjects are asked to think
aloud,' i.e., to report on their conscious thought processes while solving some problem. The
potential problems with this technique include the doubtfulness of the connection between
verbal reports and mental processes (cf. Ericsson & Simon, 1980) and whether having to make
a verbal report changes the task significantly and thus invalidates any generalization of the find-
inp to more naturalistic situations (i.e., the experimental situation is not ecologically valid).
Both these objections hinge on the fact that the verbal activity is not intrinsic to the subject of
study. In a two-person interaction the communication is not made for the investigator's bene-
fit but for the other participant(s). In addition, even if a subject is poor at expressing her
knowledge she is likely to persevere in trying to communicate until her partner does under-
stand, while in traditional protocol analysis the investigator is left with the choice of interven-
ing further with requests for clarification or of making inferences from the protocols.

Several researchers besides Miyake have taken protocols from interacting participants,
e.g., Gentner & Norman (1977), Suchman (1983). In addition, Bainbridge (1979) discussed the
use of verbal protocols, noting that it can be useful to record from two users who are working
together to solve some problem, or from an experienced user guiding another, and commented:
'Maximum communication of thoughts and knowledge, or admission of lack of knowledge, can
then be natural aims rather than a source of embarrassment.'

An important advantage of two-person studies is that the investigator need not be a com-
. plete expert in the topic discussed by the subjects (although some prior knowledge is neces-

sary). It is possible to allow the subjects to explore a problem and to develop the solution.

16. Paper submitted to the First IFIP Conference on Hummn-Computer Interaction (London, September 1984).

[e. --



O~aley, Draper, and Riley 42 Constructive Interaction

Study of the transcripts may then allow the investigator not only to grasp their solution, but to
extract the ways of expressing it that proved effective for the participants from among other
less effective attempts. Furthermore in human-machine interface applications, subjects' choice
of topic (if you allow them one) is itself revealing of where they perceive there to be problems
in understanding a system, as one of our studies has shown.

Applying Constructive Interaction to human-machine interaction means studying what
users tell each other, and this is an important but neglected topic. As Scharer points out
(Scharer, 1983), and as casual observation shows too, a major, and often overwhelmingly

predominant, source of information for users is what they can learn from other users (i.e.,
users don't read manuals, they ask other users). The complete human-machine interface, there-I
fore, does not just consist of a user and the machine, but includes other users who support
each other by supplying important ideas and information. This by itself is a strong motive for
studying the exchange of information between users. This channel will probably always be
important, but in the usual situation this is enhanced because any deficiencies in other chan-
nels (e.g., standard documentation) will be made up for in practice by asking other users.
Thus, it is also vital to study this channel to detect deficiencies in other channels.

Miyake's original study (Miyake, 1982) concerned the problem of understanding how a
sewing machine could make stitches. Two subjects were videotaped as they tried to develop an
adequate theory, largely by verbal discussion but also using paper and pencil and other simple
aids including eventually the sewing machine itself. The theory developed by subjects was
found to involve several stages, each of which solved the problem posed by the previous stage.
The recordings were analyzed to identify the few moments of crucial transition when a new
stage was reached for one or other of the participants. Applying this to various aspects of the
UNIX"? user interface, we ran several p-lot studies in which two participants were videotaped
as they discussed some part of the interface.

Our studies involved different topics of discussion, and different mixes of participants in
terms of their prior knowledge of the topic. Participants had the use of a terminal with access
to the system as required, and sometimes made pencil and paper sketches, which were also
recorded. The topics were only loosely determined beforehand, mainly by the participants
themselves, and there was minimal intervention by the investigators.

A Study of Problem-Solving about System Concepts

The first study we shall discuss was directly comparable to Miyake's studies in that it ad-
dressed mainly a mental models issue. The topic was the UNIX C-shell (command interpreter)
- in particular, the rules governing when variable values will get passed to subordinate
processes. This is governed by a consistent model, but one which is not discussed in the exist-
ing documentation, at least in connection with variable values. The two participants were both
conscious of having a fund of experiences which they had not succeeded in connecting by a
coherent theory and were interested in ttying to do so. They both knew the system moderately
well but were not experts. The study consisted of two one-hour sessions, with two subjects us-
ing pencil and paper diagrams and experimenting with the system. The whole interaction, in-
cluding the diagrams and the screen, were videotaped. The investigator was present but did not

* 17. UNIX is a ttadeniark of BWl Laboratorie. The comments in this paper refer to the 4.1 BSD version developed at
the University of California, Berkeley.



O'Malley, Draper, and Riley 43 Constructive Interactioc

intervene.

The first session revealed early on which system objects and concepts the participants al-
ready knew about. Both subjects knew that the command interpreter was the C-shell, were
aware of .cshrc files (these initialize the state of a user's C-shell), and knew of the existence of
two kinds of variable (C-shell variables, and environment variables), and that these have dif-
ferent inheritance properties. It also revealed what had appeared as problems to the subjects:
e.g., the distinction between the two kinds of variable (the shell variable and the environment
variable), and the rules governing their transmission.

However, it also revealed that the subjects were seeking different kinds of explanation,
based on different kinds of system models. S1 had considerable programming experience in
UNIX, and tried to derive a theory for the differences between the variables and their transmis-
sion from his knowledge of the fork and exec system primitives which he knew were fundamen-
tal to UNIX. About a third of this first session was taken up with this construction and Sl's
explanation of it to S2, aided by diagrams that they drew. The amount of talking was fairly
evenly divided, and S2 clearly understood Si's explanations - at least at a surface level.

The subjects then tried an experiment by typing an exec command to the C-shell. (This
was actually suggested by S2. This test is possible because the shell implements an exec com-
mand that directly reflects the underlying exec system call.) When you type 'exec command," the
'command" is executed normally but instead of then getting back the shell prompt, indicating
that the shell is present and ready for the next command, you get the login prompt indicating
that the shell has 'died' and your login session finished. This reflects the fact that the shell
wexec-ed' the command - replaced itself by the command - and shows by implication that
normally a shell runs a command as a separate, specially created, process.

This was a crucial experiment for S1, in that it provided for him a direct confirmation
and illustration of his understanding of the shell's operation in terms of the system's primi-
tives. However, S2 did not find it at all illuminating despite an ensuing lengthy discussion
between the two. Thus, this is an example of how a crucially informative observation for one
subject - the subject with a model in which it fitted - may have no value to the other sub-
ject despite attempts at explanation.

S2 had a different conceptual model, which was based on his knowledge of other systems,
and his attempts to understand UNIX were all attempts to relate UNIX to this prior conceptu-
al model. Fortunately, S1 knew of a system corresponding sufficiently to S2's model, and sub-
sequently set about constructing a model of UNIX that fitted that of S2. However that model
- in which there is a single active controlling process that dominates all events in the system
- is quite inappropriate for describing UNIX. Nevertheless, although S2's model was, in a for-
mal sense, of no use for understanding UNIX, in practice it determined what questions he
wanted answered, and conversely what observations were ignored because they were apparently
unrelated to those questions. Thus for S2 it was important to understand what process is
listening to a terminal before a user logs in, what happens to it when a successful login is per-
formed, and how this relates to the shell with which a user interacts after login.

The session illustrates the importance of prior concepts on understanding. For S1,
ounderstanding' meant relating observations to his knowledge of system primitives, while for S2
it meant relating them to his model of another system. The latter case especially shows that

% % % %~~C* % d, -. %- 'C*

-,- A1



Olvalley, Draper, and Riley 44 Constructive interaction

prior theory determines the problems to be solved and what counts as an explanation even
when it cannot provide the explanation. Consistent with this was the ending of the first ses-
sion, where both subjects had extended their understanding by their internal criteria but real-
ized that this had not helped them at all with one of their original questions: the relationship

L-'- between the two kinds of variables in the shell.

The second session was almost entirely concerned with experimenting with the system in
an attempt to resolve this question. The session ended after a relatively short time, and before
the subjects felt they had fully resolved their questions, at least partly because of the somewhat
confusing factors with which they were faced. The first of these was their use of two different
shells (command interpreters). Our version of UNIX supports two alternative shells, and our
subjects at this point called up both in turn. This had the virtue that they could examine
differences which are potentially informative, but it also meant they were dealing with two
rather different syntaxes. Th~e second source of confusion, or at any rate complexity, is that
the two different kinds of variables are handled not just by different commands in the C-shell,
but by commands with a different syntax. In addition, different commands are needed to
display as opposed to set environment variables (while the same command in two different
forms is used for shell variables). Finally, the subjects used nested instances of shells (by calling
a shell within a shell) as part of their exploration. Not surprisingly, they found it hard to keep
track of what was happening, and of what conclusions might be drawn about the theories they
were comparing.

Nevertheless, experimentation is a reasonable and informative way to discover things
about the UNIX system, and our subjects made some useful discoveries before abandoning the
session. This suggests that the shells should be improved in order to support this method of
pining understanding. One step towards this would be a simplification of the commands for
setting, changing, and displaying variables. Another, suggestea by the first session, would be to
provide a shell version of the fork command to So with the exec command, so that partially in-

-X formed users could explore the effect of these crut..ial system primitives.

Thie kind of conclusions for documentation that might be drawn from this study are that
two introductions should be written for UNIX, one explaining the basic approach to process
creation implemented by fork and exec and relating the operation of the shell to these; and
another explaining the basic system entities, the control relationships between them, and the
sequence of processes involved in a typical user session from before login through to logout.
In general, a whole set of these conceptual narratives would be necessary, and while most users
might be interested in all of them to some degree, different users would select different items
as the essential one for giving them the feeling of understanding.

Tutorial Sessions for Novices

The tutorial studies differed from the study described above in that the participants were
unequal in their knowledge about the system. The situation involved a novice user with very
little prior experience with computers, being introduced to the system for the first time by
someone who had considerable experience with the system. T'here was little insight into the
process of understanding in the tutor, since she was not developing her ideas in the session.
The session was, however, dominated by a conflict between what the tutor wanted to convey

-which was a basic ability to login to the machine and read electronic mail - and the ques-
U tions of the 'studcnt,* which were largely driven by the screen display. In order to introduce

%

............... *~* *~. 4'~ *t. ~ . .-..%



L7
O Malley, Draper, and Riley 45 Constructive interaction

the user to the message system, the tutor had to spend over half the session explaining various
aspects of the system as a result of the user's queries about what was happening on the screen,
much of which was in tact unnecessary for learning how to perform the basic task of reading
and sending mail.

One of the sources of confusion was that a new system had recently been installed for
'N first time users, which gave information about the aliases being read in from their *.cshrc' and

w'login' files, and gave them directions for where to find more information about changing
their aliases. This information had in part been deliberately designed to make visible certain
events and entities in the system (e.g., how variables were set upon login, and how to change

2% these) in an attempt to counter the problem that, without them, users typically remained
unaware of their existence, and the possibility of changing them, either for personal conveni-
ence or to fix problems that arose. However, the information was confusing for the novice,
who had no knowledge of the entities to which the information referred, and it was frustrating
to the tutor, who wanted to deal simply with the process of logging in and reading mail.

This reveals a conflict between designing the interface for the long term benefit of the
learner or for ease of initial introduction. The tutor here clearly favored the latter, and found
these aspects of the system a major impediment to what she wanted to teach. It also suggests
an alternative approach which would be to set new users up so that upon login they enter the
message system immediately, and are not confronted with the shell. The virtue of this is that
they can learn to use one thing at a time undistracted, and that one thing (e.g., electronic mail)
is a useful and meaningful activity complete in itself. A disadvantage is that, at least at first, a
new user will see a system that is different from other people's, perhaps reducing the amount
users can help each other and introducing the need to decide on transition points between ver-
sions of the system.

These sessions also revealed the importance of low-level protocols to the first time user.
By this we mean the procedure (protocol) which is used in order to effect a smooth dialogue.
For example, one protocol used in most user-system dialogues is that each command is fol-
lowed by pressing the RETURN key. However, in our system, this is not a consistent protocol
across different "environments.' The protocol is appropriate for dialogue at the shell level, but
not in the editor, where commands are executed as soon as they are specified. Furthermore, in
both the editor and the message system, both kinds of protocol are present: so sometimes the
RETURN key is required and sometimes not. These inconsistencies across different applica-
tions cease to be so much of a problem for the more experienced user, who can recognize dif-
ferent contexts and perform the correct procedures appropriately. However, these differences
are not made explicit in most introductory manuals and tutorials. A majority of the pupils'
questions, in all of these studies, w .o: directed at this - a topic that the tutor (like written
tutorials) did not seem to anticipate having to focus upon.

* A number of other confusions about the system of the kind found in one-person proto-
col studies of novices (cf. Lewis & Mack, 1982; Mack, Lewis, & Carroll, 1982) also showed up.
For instance subjects were confused about when they should take the initiative in interacting
with the system, and about what a 'prompt' was. Prompts can be viewed as turn-taking signals
for the user/interface dialogue, but furthermore, depending on context, they indicate that a
particular kind of response is required from the user. Some prompts may be interpreted as

9..ready' signals for the next command from the user, whereas other prompts might be interpret-
ed as specific requests for information. In addition, prompts of different types may be used as



O'Malley, Draper, and Riley 46 Constructive Interaction

signals or reminders of the context or environment (e.g., the editor versus the shell). This kind
of knowledge tended to be taken for granted by the tutor in our studies, but it also revealed
an aspect which is not made explicit by written documentation.

Thiese sessions were also interesting in revealing some of the expectations which users
seemed to have about the results of their actions. For example, one subject was confused ty
the fact that, having quit the editor, the text still stayed on the screen. A similar example was
where the subject had logged out and was confused when the screen did not clear.

Other problems were created by ambiguities in referring expressions: for example, what
the word 'next' refers to in the context of the message system. A subject thought that typing

"next" would get her the second message, since she had already read the first one, however, shej

had then left the message system and had just come back to it.

Subjects also had problems with the idea that they could be in different 'environments'
within the same system. In fact, depending on their primary goal for using the system (i.e., text
editing, or using the message system) they tended to assume that that was all there was to the
system. In fact, there are at least three different 'environments! in which new users might find
themselves: the shell, the editor, and the message system.

An example of the kinds of problems that can arise due to these different environments
is the following: the subject thought he was already in the editor, and forgot that he had to
"call it up." Since this subject had only used the system for word processing, the editor was the
only part of the system he was aware of. Another subject tried to type out a message from the
shell level.

Conclusions

In this paper we have reported on some exploratory studies in applying the technique ofI
Constructive Interaction to studies of interaction among users and between users and
machines. There are three characteristics which distinguish Constructive Interaction from sim-
ple two-person studies. The first of these is that the participants should have comparable
knowledge about the topic. Secondly, they should want to solve the same problem. Finally, the

emphasis should be on understanding or developing concepts, as opposed to learning pro-I

cedures. Both kinds of study are useful. The first study we described was closest to Miyake's
in spirit since it involved two participants of approximately equal expertise in discussing a topic
they had chosen and were both interested in understanding better. T'he choice of topic was in- NW
formative, as were the partial solutions they reached. The tutorial studies afforded a different
kind of information, and the two participants revealed different kinds of information from

S. each other. The 'pupil' showed clearly the problems a novice can have with the system and
with a tutorial. The tutor revealed information about how they think beginners should be in-

* troduced - about what information is relevant to explain initially, and what should be left
out. In studying tutorials given by people, clearly a two-person study is needed; in studying
novices' problems with a system, a conventional one-person protocol study might do as well,
but it is probably much easier to get a novice to articulate questions to a tutor - who is ob-
liged to try and give a useful answer -than to "think aloud" in a way that benefits the investi-
gator (but not the subject).

Nd



0'Malley, Draper, and Riley 47 Constructive Interaction

References

Bainbridge, L. (1979). Verbal reports as evidence of the process operator's knowledge.
International Journal of Man-Machine Studies, 11, 411-436.

Ericsson, K. A., & Simon, H. A. (1980). Verbal reports as data. Psychological Review, 87,
215-251.

Gentner, D. R., & Norman, D. A. (1977). The FLOW tutor: Schemas for tutoring (Tech.
Rep. No. 7702). La Jolla: University of California, San Diego, Center For Human In-
formation Processing.

Lewis, C., & Mack, R. (1982). The role of abduction in learning to use a computer system
(Tech. Rep. No. RC 9433 (#41620)). New York: IBM Thomas Watson Research
Center.

Mack, R., Lewis, C., & Carroll, J. (1982). Learning to use word processors: Problems and
prospects (Tech. Rep. No. RC 9712 (#42887)). New York: IBM Thomas Watson
Research Center.

Miyake, N. (1982). Constructive intercction (Tech. Rep. No. 8206). La Jolla: University of
California, San Diego, Center Fcr Human Information Processing.

Scharer, L. L. (1983). User training: Less is more. Dataonation, 29, 175-182.

Suchman, L. A. (1983, August). The problem with human-machine interaction. Paper present-
ed at the annual meeting of the Society for the Study of Social Problems Theory

Division/American Sociological Association, Detroit, MI.

C,.

4 ,.

"o%



Smolensky, Monty, and Conway 51 Formalizing Task Descriptions

ml FORMALIZING TASK DESCRIPTIONS

FOR COMMAND SPECIFICATION AND DOCUMENTATION

Paul Smolensky, Melissa L. Monty, and Eileen Conway

We consider the problem of formally describing computer tasks not in terms of pro-
cedures that will accomplish them but rather in terms of the input given and the output
desired. A feasibility study in the domain of printing suggests that task attributes pro-
vide a powerful language for such descriptions. We describe the constraints such attri-
butes must satisfy, and the procedure we used to design the printing attributes and test
their usability. Applications to attribute-oriented interfaces and documentation are dis-
cussed. It is argued that task description is important for moving the center of human-
machine interface design away from the machine and toward the user. is

'p.

The goal of human-machine interface design is to maximize the effectiveness of a mapping
between two worlds: the world of tasks users need to perform and the world of tools provided
by the machine. Since, traditionally, designers have depended on users to adapt their task
needs to the available tools, establishing a mapping that pays comparable attention to these
two worlds would constitute significant progress in interface design. The advent of powerful
computers means that tools can now adapt more to users' tasks. To take advantage of this, in-
terface designers must deepen their understanding of the task world; this understanding is a
prerequisite for making the design of human-machine systems less machine-centered and more
user-centered.

Our sense of the term "task' must be distinguished from the sense it has acquired from
'task analysis," a powerful tool for studying interfaces (Kieras & Poison, 1982; Bannon et al.,

* ',-' 1983; Moran, 1983; Riley & O'Malley, 1984). Analyzing tasks has traditionally been taken to
mean analyzing the procedures used to perform tasks. In our terminology, interface studies of
this kind analyze the mapping between the user's mental tools and the machine's tools for per-
forming tasks. By contrast, we are analyzing tasks in terms of transformations affected on ob-
jects without considering the processes (*tools") used to perform the transformation.

ited To develop a more formal understanding of the user's task world we are studying the lim-

ited domain of printing tasks on a computer system. This domain is rich and can be reasonably
isolated from other computer tasks. Our investigation leads us to suggest that:

(a) tasks be described in a formal framework of task attributes;

(b) computer tools be redesigned using task attributes;

18. Paper submitted to the First EFIP Conferance on Human-Computer Interaction (London, September 1984). This
work is part of the research conducted by the Documentation Group of the Human Machine Interaction Project at
the University of California, San Diego. Claire O'Malley made particularly important contributions to this work.

%o.'.

,"5 ' '_..5 "...• " .. . ".. ", , ' , _ % ' % . '' ' % "'% " . '" "% .,. ., •" '. . . , . . , . .



Smoleasky, Monty, and Conway 52 Formalizing Task Descriptions

(c) documentation be redesigned using task attributes (even if attribute-oriented tools
are not adopted).

In this paper, we first explain what is meant by task attributes, then discuss how we derived
and tested our attributes for printing tasks and argue for the use of attributes in the design of
interfaces and documentation. Our research is in its early stages; we are not describing a fully
implemented system, but rather presenting an approach and reporting on some feasibility stu-
dies.

-~ A Formal Framework for Task Description: Attributes

'Printinge refers to a large variety of tasks that differ in several minor and major respects.
This diversity is reflected in the variety of hardware and software tools that have been
developed for printing. Our UNIX computing environment, for instance, has over 30 printing
commands; each command can be invoked with several flags that each modify the command's

* ~ result. Command lines in which the output of one program becomes the input of another are
.4,- often required. Selecting the appropriate tools and creating the correct command line to take

a source document file and produce the desired output is not a trivial matter. To isolate this
piece of the user's responsibility, we have assumed that the source document file has already been
appropriately edited; any necessary formatting macros are assume to be included in the source

* .' ~file. We shall see that certain problems arise from this way of narrowing the scope of study,
because printing in UNIX is not divided cleanly between the editing and post-editing phases
when a task-based rather than tool-based viewpoint is adopted. 19 Incorporating editing of the
source file will be an important and challenging extension of our approach.

Given a source document file, there are thus many different printing tasks that can be
A performed with it. The attributes of printing tasks are the dimensions along which these dif-

ferent tasks can be distinguished. An individual task is specified by a value (or in some cases, a
set of values) for each attribute. Th~e attributes 20 provide coordinates for the space of all
printing tasks that can be carried out on a given computer system.

Initially we imagined that a half dozen attributes would suffice for printing. It quickly
became apparent, however, that several times this many would be needed to specify tasks with
sufficient precision. We now have 20 attributes, and have not yet fully covered the array of
printing tasks. Several of these attributes are shown in Figure 1. The attribute names we have
used are printed in boldface type; beneath each attribute, in italics, are its possible values, with
hierarchical organization imposed in some cases.

Design of task attributes, like most such design problems, is at this stage more an art
than a science; much iterative improvement is required. However, there are a number of pro-
perties that constrain the set of attributes.

19. For a general analysis of document formatting systems and a summary of umx document formatting, ame Furuta.
Scofield A Shaw (1982).

2D. For conciseness, the term 'attributee wiil often refer to the set of all attributes and values.

% %.,



1. 7-

Smolensky, Monty, and Conway 53 Formalizing Ta.k Descriptions

output
hard copy
soft copy

~.. ..

apaper
separated pages

_ e preprinted letterhead stationery
!plain Igp paper ...

• . .!continuous perforated pages

'"..:" 11 x 14ff ...

-'.'t.: .. printing method
full character Impact print (daisy wheel)

>7 ? electrostatic wet process print (laser printer)

dot matrix Impact print (decwriter)
pen-scribed print (graphics plotter)

formatting
none
equations
tables
references
text

casl macros
ms macros ...

portion of file(s) printed

page(s) - through

.headers

none
date
file name
page number
given in file

columns
none
several files printed on each page,

(each file in its own column)
one file printed on a page, in columns

Figure 1. Examples of printing attributes (bold) and their values (italics).

'.

.o

"-4 . .. ,.,:""""""""' ,2""- "'."' ' ., 2 ." . ." ." "•"• '". .,' , , . .-. - . """''; ,,. :"'';. -,.',,2.



Smolensky, Monty, and Conway 54 Formalizing Task Descriptions

'-S(1) Any printing task performable on the system must be describable using the values
for the attributes.

* ,(2) Any two distinguishable printing tasks must have different values on at least one at-
tribute.

(3) Each attribute should measure a single conceptual dimension of the task.

(4) Values must be definable with reference only to the input and output of the task;
no reference to processes (software) is allowed.

(5) Attributes and values must be comprehensible to users.

Implementing Attributes: A Feasibility Study

Procedure for Determining Attributes

Finding a set of attributes and values that would meet all the above constraints required
many developmental stages. We began by enumerating the printing commands available on our
research-laboratory uNIx computer system. We then organized the various commands along a

few obvious dimensions like hard/soft copy and formatted/unformatted text. We asked several
users which factors tended to determine their choice of printing command. Some users
demanded sufficient left margin to permit mounting in a loose-leaf notebook, others required

- ~,that page breaks not artificially interrupt source program listings. At this point it became clear
that the variety of contexts present in our lab and the variety of personal preferences required a
long list of attributes for users to specify the important features of their printing tasks. This
led to a list of many detailed properties that distinguish between the various printing programs.

To see what concepts seemed most important for experts in the printing domain, the
method of constructive interation was used (Miyake, 1982; O'Malley, Draper & Riley, 1984).

.5-' Two experienced system users/developers were videotaped as they together tried to organize the
printing commands in ways they thought were most useful. This refined somewhat but mostly
confirmed our list of properties of printing programs.

To ensure that our attributes covered a representative variety of tasks, we recorded all
-~ uses of the printing commands for several weeks. User command-histories were also consulted

for the printing tasks they contained. The printing-command lines were collected and used 1)
to generate values for our list of printing attributes and 2) for checking whether the constraints
cited above were satisfied. When command lines were encountered that could not be
described, new attributes and values were added; when two different command lines (e.g.,
differing in only one flag) could not be distinguished in terms of their attribute values, again
new attributes or values were added, or old ones refined.

Eventually we settled on a set of 20 attributes and corresponding values that seemed to
meet constraints (1) through (4) above, in the restricted area of hard-copy printing. Most con-
ceptual difficulties came from the fourth constraint of process-independent definitions. Time
and time again we found ourselves wanting to define attribute values through the program or
device that did the job rather than the job itself. We got most embroiled in printing details in
the area of character size and spacing. The easiest dimensions along which to differentiate al-
ternatives tended to vary across devices and programs, and it was challenging to find dimen-



7%-

Smolensky, Monty, and Conway 55 Formalizing Task Descriptions

sions that worked in all cases. For instance, the point size of typeset print is mast simply de-
fined by the height of letters, while for the various print sizes of our dot-.matrix terminal, only
the width of letters was variable. However it is precisely because it took effort for us to unify
the ways of thinking about tasks across tools that we feel our attributes have something to
offer in making coherent sense of the world of printing tasks.

The most serious difficulties arose from assuming that formatting macros were already
present in the source document file. As mentioned earlier, in our UNIX system a clean distinc-
tion is not made between aspects of printed documents that are determined within the source
document file and those that are determined outside the source file at the time of printing.
The point size of type, for example, is usually determined by appropriate typesetting commands

- Z/.within the source file, but this can be overridden or supplied in the command line; page head-
ings are sometimes determined explicitly by formatting commands in the source file but some-
times implicitly by the selection of a printing command that automatically creates a heading.
As a result, a possible value for several of the attributes is "determined within the sousrce file.' It
would seem more elegant if a given attribute were either always determined within the source
file or always determined outside the file, but that is not the case for our system.

Usability of Attributes

It remained to be seen whether criterion (5) was met: could users actually use our attri-
butes for describing printing tasks? To assess this, we devised 7 hard-copy printing tasks that

Vvaried widely. Users familiar with our computer system to varying extents were shown a raw
printout of the source document, and a hard copy that defined the 'desired result.! They were
given a checklist with all possible values for all the attributes; their job was to check all the

values that described the 'desired result.'

* We concluded from this informal study that attributes provide a very useful mechanism
for users to describe tasks. Users with an understanding of typesetting were able to use the at-

V tribute descriptions with no instruction; others quickly learned the meaning of the attributes
when allowed to ask questions. Users did have considerable difficulty understanding the
within/without source file distinction; some instruction here might have helped significantly.
Like us, users had to think hardest about the attributes concerning character size and spacing;
it is a level of detail that is rarely thought about with any comprehensiveness. However, when
asked to address these matters and when given supporting documents to consult (with exam-
pies of different fonts, sizes, spacing, and so on), users did fairly well. They tended to be un-
comfortable specifying attributes that do not consciously enter in their choice of printing com-
mands. Several people made encouraging comments about the value of the approach, and most
said they expanded their knowledge about the printing capabilities of our system.

A study was also done to explore which attributes users would want to specify when pro-
ducing a document. Users were given a verbal description of a realistic task situation, a source
file, and a sample of a hard copy suggesting what they might want to produce. They were given
the attribute checklist and asked to indicate those values they wanted to specify. The usability
of the attributes was comparable to that of the other study; in addition, users wanted to assign

'V weights to various attributes, ignoring some altogether.

16 0

11d6



Smolensky, Monty, and Conway 56 Formalizing Task Descriptions~

Extensibility of Attributes

It is important that the set of attributes and values be expandable to accommodate un-
foreseen future task capabilities of evolving computer systems. This serves as a sixth constraint
on the attributes, but one that is impossible to rigorously test. After the formulation of our
attributes, the capability to make a hard copy of a bitmapped display screeni was added to our

.'* ,*system. This was a fairly good challenge to our attributes; for the first time one could print
' ~' something that was not a file. However it was straightforward to change the attribute source

document tile to source document, adding the values file ____and bitmapped screen. We
have yet to see any reason for doubting that attributes offer a language for describing tasks that
is as easily expandable as any such language could be; in fact we suspect that the lack of expli-
cit tool-dependence in the attributes enhances their ability to accommodate task expansion

-K from new tools.

Applications of Attributes In System Design

Redesigning Printing Tools

Attributes provide a powerful set of primitives for precisely specifying the task a user
wishes to perform. They can in principle be used as a new basis for issuing commands. In such
an attribute-oriented computing environment, the user would simply specify values for relevant

p attributes, and the computer would perform the necessary actions.

* An attribute-oriented environment would work something like this: the system designers

would formulate a set of task attributes in the various task domains, e.g., printing. They
would write a program that would take a collection of values for attributes, request values for

necessary missing attributes, compute appropriate values for attributes the user didn't care to
- . specify, and perform the task. Our experience with printing attributes leads us to feel that (at

least in this domain) such a general tool is feasible. In addition to writing this printing pro-
gram, the system designers would create a collection of print ing-att ribut e prototypes. Each
prototype would be a package of values for printing attributes that describes a frequently exe-
cuted task, like formatting text and printing it on the laser printer, printing a file on the user's
screen without interpreting formatting commands, etc. These attributetvalue packages would
be given names; the two examples just mentioned might be called format and show.

While format and shmow are ways of using the general printing tool, to new users they
would be *printing commands.* Documentation would state the values each attribute has for
each 'comnmand." To go beyond one of the standard 'commands,' a user would be able to ac-
cess the package of attribute values defining that 'command," modify it, and save the modified
package under a name that could then be used as a new 'command.'

-AL ISome combinations of values for our attributes are simply not possible to realize; the at-
tributes are not truly independent in this sense. A facility to help users create feasible pack-
ages of attribute values could be based on a database of rules encoding the interdependence of

- *. feasible attribute values (e.g., 'if output =soft-copy then papcr=none'). Users would start by
* :- specifying values for the attributes most important to them, and as they did so the system

would interactively guide them by spelling out the implications of their choices, soliciting
further choices from feasible values for the remaining attributes.



Smolensky, Monty, and Conway 57 Formalizing Task Descriptions

Attributes can in fact be used not just for specifying commands, but also for accessing
, files; a proposal for a unified attribute-oriented interface is presented in Greenspan and

Smolensky (1984).

Tool-Based Documentation
"'a

The attributes we have developed allow users to specify printing tasks within the existing
capabilities of our laboratory computing system. Without redesigning the printing software in
the manner described in the previous section, the knowledge about the printing task world
contained in the attributes are extremely useful for documenting the existing printing tools
(Kieras & Poison, 1982).

In O'Malley, et al. (1983), two types of documentation were found to be needed by users;
we'll refer to them as tool-based and task-based. Tool-based documentation is designed for users
who want information about a specific hardware or software tool, such as what the 'ma flag
for the lprinr command does, or whether a daisy-wheel printer can move up and down half-
lines. Task-based documentation is designed for users who have a task to perform and don't
know what tools are needed or even whether the task can be done at all. The imbalance
between respect paid to the tool- and task-worlds is nowhere more evident than in documenta-
tion, where task-based documentation is vastly under-represented relative to tool-based docu-
mentation. This is no surprise, for the people who design tools already have the knowledge re-
quired to write tool-based documentation; task-based documentation requires developing an
understanding of the task world and a language for talking about it. Attributes provide such a
language.

O'Malley, et al. (1983) found two distinct needs for tool-based documentation: full expla-
. nation and quick reference.

a' Full explanation. Full explanation encompasses the two forms of documentation usually
called 'tutorialsa and 'users manuals.' Manuals are typically an alphabetical sequence of entries
describing the tools available in the system; the descriptions typically assume the reader is fami-
liar with the necessary concepts. These concepts are presumably explained in the tutorials.

Attributes are precisely-defined concepts that we suggest should be used in the full expla-
nations of software and hardware tools comprising manuals. They offer a uniformity to tool
descriptions that facilitates the user's task of assimilating the variety of tools offered by power-
ful systems. In addition, the uniform set of underlying concepts embodied in the attributes
can be explained to users in a document analogous to a tutorial; this attribute encyclopedia will
be discussed below.

Quick reference. Attributes also enable concise but precise summaries of what com-
mands achieve. Figure 2 shows a portion of the summary for one of our local printing com-
mands, lprint. All printing commands can be summarized using the same set of attributes, and
the precise meaning of the terms used can be found in the attribute encyclopedia. Task and
tool characteristics are comparably salient; in the corresponding summary developed for a
quick-reference facility that did not use attributes (Bannon & O'Malley, 1984), tool characteris-
tics like program flags are salient, while task characteristics are buried.

,a-.,.

a.'-



-... ..M.-.1-7 71777771.T.- NW -k-Z

Smolensky, Monty, and Conway 58 Formalizing Task Dcscriptions

Iprint {options} {tlles} I prints {fiies) on laser printer (igp) In 8 Point fixed-width type with
I pagination and header. Does not interpret formatting commands.

The {}brackets enclose items to be substituted for. Do not type the {}.

attribute default value revised value ... set by. . . option

output hard copy
paper plain laser paper
printing method electrostatic wet proess (lgp)
type font stick font
formatting no macros Interpreted

'pportion of flies printed all page (n) through end I+{n)
header date, file name, page numbers no header I t

{word) (no blanks) --h f{word)
(string) (blanks ok) -h {fstring)M

direction of printing standard sideways on page, 2 columns 1 -1
coluns none each {file) In Its own column I - m
'Veach (file) printed I - fn)

In (n) columins

Figure 2. Use of attributes to summarize the local command I1print.



Smolensky, Monty, and Conway 59 Formalizing Task Descriptions

Task-Based Documentation

Using attributes, documents can be written that describe precisely the tasks users can per-
form, leaving the tools that perform them in the background.

Attribute encyclopedia. In Figure 3, the entries are organized so that the document as a
whole can be used as a tutorial on printing. The index to the encyclopedia directs users to the
appropriate entry to learn about an attribute, value, or other term used synonymously or in
connection with an attribute.

An attribute encyclopedia has several advantages over conventional tutorials and manuals.
Unlike most manuals, it can be approached without prior knowledge about printing concepts.
Unlike most tutorials, it goes into complete depth about the matters discussed. Like manuals,
it consists of a number of separate entries that can be used independently for reference pur-
poses. And like tutorials, it has some overall structure so that it can serve as an overview of
the printing domain. The encyclopedia brings together all the information relevant to one as-
pect of a task, including information that in traditional, tool-oriented documentation, would
be scattered across many documents. The information organized by attributes in Figure 3 is
culled from the many sundry traditional tool-based documents, a few of which are shown in
Figure 4.

The attribute encyclopedia is an excellent vehicle for expanding users' printing repertoire,
because unfamiliar attributes would be clearly visible as would unfamiliar values for familiar at-
tributes. In compiling the encyclopedia, the system documenters have already done the diffi-
cult work of pulling together the relevant pieces of myriad tool-based documents into a task-
based structure. The =.ncyclopedia is particularly valuable because the concepts and terms it
presents are precisely those used in the other forms of documentation.

Task-to-tool index. The attribute encyclopedia deals mostly with the task world, refer-
ring to hardware only to discuss certain attributes (e.g., printing method) and referring not at
all to software. In fact the same encyclopedia could be used in the redesigned attribute-
oriented environment described above. In the present system, there is need for an additional
form of documentation, a task-to-tool index taking a user's specification of a task using attri-
butes and pointing to the appropriate software tools. The task-to-tool index can be imple-
mented at various levels of sophistication. Simplest would be an on-line or on-paper index in
which users would look up values for individual attributes finding the names of all the pro-
grams capable of printing with that value for that attribute. The user or the computer would
then try to find a single program, or a way of combining several programs, to achieve the entire
package of attribute values. A somewhat more involved approach would rely on a large data-
base of command lines, each with the task it performs completely described with attribute
values. A user would give a set of attribute values, and the database would be searched to find
command lines that matched as closely as possible. A more sophisticated on-line system would
work interactively. As a user specified the desired values for attributes, the system would indi-
cate which programs are possibilities, and guide subsequent choices by listing those values avail-
able with the possible programs.

For previously discussed types of documentation, we have argued that attributes offer im-
provements by giving a uniform language for describing tasks. Task-to-tool documentation
would be an extremely valuable new form of documentation; it is simply impossible without

OV

%............................................



Smolensky, Monty. and Conway 60 Formalizing Task Descriptions

Kinds of output
Soft copy

Kinds of CRT screens
Hard copy

Kinds of paper
Kinds of printing method
Kinds of printers

Kinds of printed objects
Graphics
Text

Text printing
Type fonts
Character size
Character spacing
Line spacing

Text formatting
Without software
With software

Equations
Tables
References
Graphics
Macro packages

Figure 3. Task-based documcntation: portion of contents of pnnting attribute encyclo-

pedia.

r--
-,.

.

.d..

I 17



Smolensky, Monty, and Conway 61 Formalizing Task Descriptions

K

Talking to the Computer with your new Tektronix 4010
Computer Display Terminal

Hewlett Packard 7221A Graphics Plotter Operating and
Programming Manual

Laser Graphics Printer LGP-1 Technical Manual

UNIX for Beginners

User's Manual for the UNIX System

Typesetting Mathematics - User's Guide

tbl - A Program to Format Tables

Newgraph Tutorial

Sample Text and User's Manual for the csl Macros
Package

Typing Documents on the UNIX System Using the -ms
Macros with troff and nroff

Figure 4. Tool-based documents.



-K 777 27 Z

Smolensky, Monty, and Conway 62 Formalizing Task Descriptions

the kind of language provided by attributes.

Conclusion

In the domain of hard-copy printing, our investigations suggest that a set of about 20 1-
tributes suffice for specifying the tasks that can be performed in a fairly powerful researc..-

laboratory computing environment. Users seem to find them useful ways of describing tasks.
The attributes can be developed in a reasonable length of time. The attributes have potentially
great utility for redesigning command specification, improving traditional forms of tool-based
documentation, and permitting the development of powerful new kinds of task-based docu-
mentation.

References

Bannon, L., Cypher, A., Greenspan, S., & Monty, M. L. (1983). Evaluation and analysis of
users' activity organization. In A. Janda (Ed.), Proceedings of the CHI83 Conference on

Human Factors in Computing Systems. New York: ACM.

Bannon, L., & O'Malley, C. (1984). Problems in evaluation of human-computer interfaces: A
case study. Manuscript submitted to the First IFIP Conference on Human-Computer
Interaction (London, September 1984). Also included in this Technical Report.

Furuta, R., Scofield, J., & Shaw, A. (1982). Document farmatting systems: Survey, con-
cepts, and issues. In J. Nievergelt, G. Coray, J. D. Nicoud, & A. C. Shaw (Eds.), Do-
cument Preparation Systems. Amsterdam: North-Holland.

Greenspan, S., & Smolensky, P. (1984). DESCRIBE: Environments for specifying commands
and retrieving information by elaboration. Manuscript submitted to the First IFIP
Conference on Human-Computer Interaction (London, September 1984). Also includ-
ed in this Technical Report.

•-. .Kieras, D. E., & Poison, P. G. (in press). An approach to the formal analysis of user corn-
"." plexity. International Journal of Man-Machine Studies.

Miyake, N. (1982). Constructive interaction (Tech. Rep. No. 8206). La Jolla: University of
California, San Diego, Center for Human Information Processing.

Moran, T. P. (1983). Getting into a system: External-internal task mapping analysis. In A.
Janda (Ed.), Proceedings of the CHI83 Conference on Human Factors in Computing Sys-
terns. New York: ACM.

O'Malley, C., Draper, S., & Riley, M. (1984). Constructive interaction: A method for studying

user-computer-user interaction. Manuscript submitted to the First IFIP Conference on
Human-Computer Interaction (London, September 1984). Also included in this

* .- Technical Report.

Sq

,N

:1'"

p.

" V¢./ ."- " " ... '" '" "'" " " " " ''" " " "'" " ' "" """" " " '" " "" " " "'" "-" '"" "



Smolensky, Monty, and Conway 63 Formalizing I ask Vc-script ion,

O'Malley, C., Smolensky, P., Bannon, L., Conway, E., Graham, J., Sokolov, J., & Monty,
M. L. (1983). A proposal for user-centered system documentation. In A. .Janda (Ed.),
Proceedings of the CHr83 Conference on Human Factors in Computing Systems. New
York: ACM.

Riley, M., & O'Malley, C. (1984). Planning nets: A framework for analyzing user-computer in-
-4 teractions. Manuscript submitted to the First IFIP Conference on Human-Computer

Interaction (London, September 1984). Also included in this Technical Report.

S..



Bannon and O'Malley 67 Problems in Evaluation

PROBLEMS IN EVALUATION OF HUMAN-COMPUTER INTERFACES:
A CASE STUDY

Liam Bannon and Claire O'Malley

One of the most difficult aspects of interface design is evaluating new or changed
features of an interface. In this paper we discuss methods of evaluation, their strengths
and weaknesses, in the context of a program we developed to assist users in getting quick
access to information contained in the UNIX 21 manual. We outline the problems encoun-
tered both in the design and the evaluation of this user interface. 22

A basic tenet held by our research group is that the design and evaluation components of
software development should be treated as a whole and not isolated from one another
evaluation should be considered from the outset of the design and built into the development
of the system. We have tried to adhere to this principle in conducting our research. However,
the task is not as easy as it may seem at first. Our experience in designing, implementing, and
testing a small program resulted in several practical problems which are the subject of this pa-
per.

Description of the Study

The study which we describe is part of our research on the development and use of sys-
tem documentation in the Human-Machine Interaction project at UCSD. (cf. O'Malley et aL,
1983). We have been examining how people at our Institute use the existing online documenta-
tion by monitoring their use of the programs, and by soliciting online feedback from users as
they sought information in the manual. We found that about 35% of the use made of the on-
line reference manual 23 was for what we refer to as "quick reference": users needed to be able
to verify the name of a program, or check on flags, options, and syntax, without having to scan
through extraneous material. In an attempt to meet this need, we developed a prototype on-
line Quick Reference facility that contained only the correct syntax of the command, a list of
possible options, and a brief explanation. This prototype system had a limited database consist-

21. UNIX is a trademark of Bell Laboratories. The comments in this papa refer to the 4.1 BSD version developed at
the University of California. Berkeley.

22. Paper submitted to the First [FIP Conference on Human-Computer Interaction (London, September 1984).

23. The UNIX online manual contains separate entries for each program, which is accessed by typing the command
mn with the program name as the argument. This produces several screenfuls of test in a standardized format, with
the name of the program, a short synopsis, a longer description of the program and how to use it, esamples, and
some diagnostic information.

I.



:11-. -1_7: 7 1

Bannon and OAalley 68 Problems in Evaluation

ing of printing commands 2 which we felt would be both representative of the eventual system
we had envisaged, and which would be immediately useful to our user population.

We were interested in determining whether the new facility would meet the quick refer-
* ence need that we had already identified. Because our earlier data had been collected from ex-

amining the use of existing facilities in our Institute, we decided to evaluate the proposed new
program within this same context, and assess how users changed their use of the original online
reference manual after we introduced our new facility. This meant that we had to accept much
less control over the possible variables than in a traditional experimental study, but it was a

.9 more appropriate method of evaluation at this stage in the development of the facility, as we
were concerned about whether users found it of practical use in their everyday activities. A
more controlled study would be appropriate for the purposes of debugging the specific display
design, after we had determined the usefulness of this type of facility.

- To cvaluate the usefulness of the new program we decided to compare the frequency of
use of pref with the use of man before and after its implementation by means of system ac-
counting data. However, we also wanted more detailed information than simple usage data, in
order to determine whether there were any problems with the facility, and what improvements

11.0 should be made to it. One way to obtain this kind of information is from users themselves, by

;1 eliciting comments after each use of the program. However, earlier studies showed that many
of our users complained that the request for online feedback was obtrusive, and interfered
with the tasks they were performing. Therefore, in designing the evaluation tools for our new
facility we included in our quick reference program a simple menu facility to allow easy user
feedback on the usefulness of the information provided.

However, despite the fact that we went to some lengths to ensure that our methods of
evaluation were carefully designed and conducted, we still had difficulty in giving a complete
account of our results. In the following sections, we document some of these problems and

d, try to relate them to more general issues in evaluation.

Design Aims and Evaluation Methods

'4,. Our main design considerations were the need for quick scanning of the material on the
screen, brevity and clarity of the information, relevance and lack of redundancy, and clarity of

% syntax. In working on the design, we were very conscious of the necessity to make tradeoffs,
and of the very limited information that was available to make such decisions. Some of our
design objectives, such as reducing ambiguity and jargon, are not affected by the mix of users,
but there were several aspects of the design where the demands of brevity and clarity pushed
for different solutions, depending on the user population envisaged. The intended users of our
new program encompassed a wide range - students, administrative staff, research faculty and
staff - with varying degrees of knowledge about the UNIX system. Producing an interface that

* would be acceptable to such a wide variety of users was a difficult task, and led to a somewhat
uneasy compromise.

As we have already discussed, we had two methods for collecting information on the use-
fulness of our facility: information concerning frequency of use from the system accounting
data, and online comments from users.

24 The prototype systemn that we developed was called pref for 'prnting reference.'



.....

Bannon and OMalley 69 Problems in Evaluation

Online feedback. The online feedback was the most useful in identifying common prob.
Lerns, and it also served to suggest reasons for the patterns we found in the account data. The
main drawback of this method was its intrusiveness on users, and we found that after a while
users stopped providing comments. However, despite the potential annoyance to users, this
method proved useful in identifying some of the problems encountered by our users.

System accounting information. The system accounting information, an the other hand,
was useful in identifying patterns of use. It was especially useful in revealing the pattern which
we characterize as 'task-specific help,' involving several successive calls to man, with different,
but functionally related, arguments. However, there were some problems inherent in the use of
the system accounting information. In investigating the frequency of use of the commands for
which users were seeking help, it was difficult to determine exactly what users were doing, be-
cause the system accounting information also collects information on pre- and postprocessors
called by the program, but not specified explicitly by the user. Distinguishing these data is dif-
ficult with the present system, since one has to use knowledge of the processors called, and
timing information, to infer what was actually typed by the user. Thus the data had to be sift-
ed "by hand' before any automated analysis could be conducted.

Given the problems outlined above, it seemed necessary to combine these two different
means of collecting data: user comments indicated usage problems that were not obvious from
examination of the system accounting information, while the latter data were more revealing of

patterns of use. The more general point here is that the method of evaluation used should pro-
vide information on both the nature and range of problems, as well as their frequency of oc-
currence, and for this several methods of evaluation are required. On their own, these kinds of
information provide only gross indications of problems, but in our case they did prove useful
in identifying broad categories of help that users needed.

,4 Results of Evaluation

System accounting information. One of our concerns in evaluating the system was
whether our new program was more satisfactory than man for getting help on options and syn-
tax. We reasoned that, if pref is useful, there should be some effect on the ue of man. We had
identified about 35% of the use of man with the need for quick reference, so we might expect
about a 35% drop in man if that need was being fully served We decided to compare the fre-
quency of use of man for the period prior to implementing pref, with the use of man and pref
following installation. 25 We did find a decrease in the use of man for pref users; however,
there was also a decrease for those who did not use our facility. When we examined the fre-
quency of use of the printing programs themselves we found a concomitant decrease, which

0 could account for most of the overall decrease in the use of man. When we normalized the
data to control for the decrease in use of printing commands, the difference in use of man
between pref users asnd those who did not use pref was still large, so we can conclude that the
use of pref had made a difference to the use of man.

21. One major problem was that pref was initially deigned only to cater to the subset of commands which dealt with
4 printing, so we bad to select those calls to man that had the same arguments as those that pref covered, in order to

do an accurate comparison.



Bannon and OMalley 70 Problems in Evaluation

Online feedback. The data described above gave us a general idea of the usefulness of
pref, but we needed more detailed information. We had built into the design of the facility a
means for obtaining this more detailed kind of evaluation which we felt would minimize disr-
uption to users. Users were able to indicate their success or failure to obtain the information

they wanted by a simple menu of commands (See~ Figure 5). In order to quit the program, the
user types upper case Q(uit) if the facility is Ls.ful, and lower case q(uit) if it is not. 26 We
also gave users the option of providing more detailed feedback, by typing c(omments), which
puts them in the editor where they can type their comments and then return to the quick
reference entry. Users are also able to get a more detailed explanation of the command from
within the quick reference facility, by calling the regular online manual without having to quit
the program, by using the command mn(anual). They can also specify new arguments by using
the "new' menu option. Users specify lower case n(ew) if the previous entry had been u~nhelp-

* -,.ful, and upper case N(ew) if the previous entry had been helpful. Users can also get online
help for the use of the facility, by typing h(elp).

We compared the use of upper and lower case quit commands, and found a significant
difference in favor of the upper case (55%), indicating that users found the facility useful. We
were concerned about whether users were simply perseverating by choosing to always type
upper or lower case, so we examined the use of upper case N and lower case n, and found that
there was no corresponding significant difference between these two, in fact there was a slight
difference in the opposite direction. This ruled out simple case perseveration as an explanation
of the result. We also considered the possibility that the ase of pref and man might be for
quite different sets of printing commands, which would thercforL- make a comparison between
the two of rather limited usefulness. 27 However, when we correlated the use of the arguments
to pref with the arguments to man, we found a significant positive correlation, indicating that
the pattern was not appreciably different.

Another of the evaluation questions we had asked concerned what improvements could
be made to the facility. The online feedback obtained from users provided useful suggestions
about possible improvements: the comments indicated that they found the program a positive
addition to existing facilities, and their suggestions were extremely helpful in further refining
the facility at each design stage. For instance, the facility was changed to page rather than
scroll after user comments indicated irritation with the scrolling.

Summary

In summary, our evaluation provided a number of measures that supported our hy-
pothesis that a quick reference facility for system commands was needed. There was a drop in
the use of the man command for printing programs after pref was introduced, and online user
evaluations of p.-ef after each usage were, on balance, favorable. What of longer-term evalua-
tion? When we examined the patterns of use which emerged over the period between initial
implementation of the facility and after it had been in use for a few months, there was a reduc-
tion in use of the prototype system. Our methods of evaluation supplied no obvious reasons
for this.

- 6. The reason for using upper case to indicate succes wa; to lessen the probability of response bins, cnce lower case
is the normal form of a command, and it is easier to type.

7-7 27. The reasoning wait that pief might just be supplementing specific inadequacies in some of the manual entries, as
in some case the information in the pruf entries was mome complete than that in ma.



Bannon and O'Malley 71 Problems in Evaluation
'.~

-. NAME OF ,,,ee: Summary of cat command Page I of I
". '_...COMMAND cat{option.} mils) , print mies- sequentially ,wthou,, formatting" SHORT4

3DESCRIPTION
--:" EXPLANATION ° 1". () brackets enclose Items to be substituted for. Do not type the{."

,, OF SYNTAX Il, zero or wore(de t"ep,,rated by blanks. When.- Is
=.i typed (a Place Of a fileuame, the standard Input is

-%--I read (Input terminate$ with {control-d})

luptious}

-sI compact successive blank lines to a single blank line -'

- OPTIONS I- output [los numbered sequentially|
" b -a output in~es numbered, except for blank lines EFFECTS

, .7 .-u Ioutput unbuffered _

• ., ,,MENU: q(u it.) Q(utt+) p(age) €(omments) mo(anuad) n(ew-) N(ew+) b(tip):-,

SMENU OF
CiiCOMMANDS

Figure 5. Example of pref screen display.

% r p t w "n- "".



Bannon and OMalley 72 Problems in Evaluation

Conclusions

Some of the problems we encountered were due to the lack of control we had over the
variables. Our study was not an experimental one in the tradition of laboratory studies,
although we attempted to be as rigorous as possible in our data collection without intruding
too much on our users. The main reason for choosing to test our system initially "in the field'
was that we were concerned with the basic question of whether our program was serving its in-
tended purpose in fulfilling a need which was not provided adequately by the existing docu-
mentation. The answer to this question could only be provided by studying the use of the sys-

4' tem within the context of the existing facilities. Other questions concerning the details of the
design, the format of the display, and so on, are more amenable to strictly controlled studies.
However, we felt it important to test out our concept of the system before investing too heavi-
ly in details of a specific design.

We have discussed the importance of considering evaluation questions at the outset of
the design. Thc need for iterative and piecemeal development, where prototypes are implement-
ed and tested before the final version is developed, often leads to problems relating to the
represent ability and scope of the system *pieces' that are initially chosen for implementation
and evaluation. Testing of prototypes means that any modifications that have to be made cost
less than with a complete version; however, the evaluation of the prototype system may not
generalize to the proper context envisaged for the complete system. In our own case, one as-
pect of this problem of 'modularity' which concerned us was whether or not the choice of
domain in which to implement the prototype was a representative one. Our restriction of the
quick reference facility to the printing commands was done for the sake of expediency, as we
did not have the time nor the resources to build a database for the whole UNIX command set.
The domain itself was certainly appropriate in that almost all of our users performed these
tasks frequently, and often needed quick reference help. However, the database we implement-
ed was still restricted in scope, and several users expressed dissatisfaction with the limited
amount of information provided; users wanted information concerning programs which our
prototype did not yet cover.

The reduction in use of our prototype over time is difficult to interpret. Some possible
explanations include the following: some reduction in use of the facility is expected in the

A weeks following its introduction, as the novelty factor diminishes. Also, users may have forgot-
ten about the facility, or they may have forgotten the name of the program - not an unlikely
occurrence on a system with hundreds of commands. This latter problem is likely on our sys-
tem because of the lack of support for accessing documentation (in general, the user needs to
know the name of the program in order to access it.) Users may have memorized the relevant
information in pref, thus reducing the need to actually call the facility.

uaeAlternatively, rather than expending effort on trying to account for a slight reduction in

usag ofournewfacility, perhaps we should consider a more basic question: what is an ap-
propriate baseline level of use for such a facility? We had not really studied this issue prior to
development, and we still do not have an answer to the question. The crucial issue about do-
cumentation facilities in general is not whether they are heavily used, but whether they satisfy
the information needs of users on those occasions when they are used. (For example, our use

dp, of a dictionary may not be frequent, but can nevertheless be quite important.) This suggests
that it may not be appropriate to rely on frequency of use information in the evaluation of the
success or failure of a particular software facility.



Bannon and O'Malley 73 Problems in Evaluaio1

References

O'Malley, C., Smolensky, P., Bannon, L., Conway, E., Graham, I., Sokolov, J., & Monty,

M. (1983). A proposal for user centered system documentation. In A. Janda (Ed.).
Proceedings of the CHI '83 Conference on Human Factors in Computing Systems (pp. 282-
285). New York: ACM.

Z'p

7.

% ,

'.4-

i.4

'"

.:-.."

.'."

-'
° .° °

*',.°0

'S ,,";% " '''' ' "',,,, %"' . " ..,¢'''',. ."-.' '.' ",- """ '''"g' .. ''""" - 4 - '" " " '..



Riley and O'Malley 77 Planning Nc!,%

J.

. I
PLANNING NETS:

A FRAMEWORK FOR ANALYZING USER-COMPUTER INTERACTIONS

Mary Riley and Claire O'Malley

During the course of interacting with a computer, a user has goals that correspond to tasks
to be performed and must plan how to achieve those goals with the available commands.
We present a framework for analyzing user goals, the mapping between those goals and
available commands, and the factors influencing the success and efficiency of the result-
ing plans. We discuss the implications of our analysis for the development of principles
for improving user-computer interactions.

Introduction

% Our analyses so far have focused on learning and performance in the context of a single
editor. However, an important objective of our approach is that these analyses achieve a level (r,

of description that will enable principles developed in this context to be extended to the in- I
struction, design, and evaluation of editors in general, and eventually to other areas of the in-
terface.

The general form of our analysis is shown in Figure 6. The figure presents a typical plan-

ning episode in the form of a hierarchical goal structure - or planning net. At the higher levels
of the planning net are global goals. Here the global goal is to edit a paper which in turn gen-
crates the additional goal to transpose two words. Since this goal does not correspond to an
executable action, further goal specification and planning is required. "Transpose two words* is
broken down into the subgoals "delete wordl" and "insert wordl after word2," which
correspond to the actions of typing "dw" (delete word) and "p" (put), respectively.

Planning does not necessarily stop with the selection of the primary actions. Associated
with actions are requisite conditions that must be taken into account in the planning process:

Prerequisites are conditions that must be satisfied before an action can be performed. Refer-
ring to the figure, the prerequisite of "dw" and "p" is that the cursor be at the appropriate lo-
cation. Therefore additional goals are generated to ensure that those prerequisites are satis-
fied.

Consequences are the changes that result from performing an action. In the above example,
the consequence of "dw" is that the word is deleted from the text and placed in a buffer.
The consequence of "p" is to put the contents of the buffer at the location of the cursor.

28. Paper submitted to the First EFIP Conference on Human-Computet Interaction (London, September 1984).

TM

4: . ... : , .;.. -.. ' ' - .. ' . . . " .. ' -.- -. . . ,. ,', -- . . . ,- . , . , .2. , . .".-.",". . -"-', , .-. '. ,



Riley and OMalley 78 Planning Nets

EDIT TEXT

TRANSPOSE TWO WORDS

DELETE WORDI INSERT WORDI
AFTER WORD2

TYPE dwTYPE p

LOCATE WORDI LOCATE
ENDOF WORD2

TYPE I(wordl} YEe

Figure 6. Planning net for the task Tranispose two words.



W- .r r V . . .- .- .a . .-. ' -- - -

Riley and O'Malley 79 Planning Nets

These consequences define the order in which "dw' and " must be executed and, further-
more, place restrictions on interleaving plans. For example, other commands, such as "in-
sert,' also have the consequence of changing the contents of the buffer - if one of these
commands were executed between "dw" and "p,' the consequence of 'p" would be different
(in this case 'p" would be inserted as text).

Finally, some commands also have postrequisites - conditions that must be satisfied after
performing an action. For example, the action of inserting text must be followed by pressing
the ESCAPE key, to return to command mode.

Figure 7 shows an expanded version of the planning net for this example.

An important component in determining the success and efficiency of a planning episode
like the one above is the mapping between the user's mental model of a command (the user's
representation of how a command works), and the conceptual model of a command (how a com-

mand actually works). Furthermore, the likelihood that the user's mental model will
correspond to the conceptual model is to a large extent a function of the system image - the

feedback presented to the user before, during, and after the command is executed. (See Nor-
man, 1983, for a more complete discussion).

The importance of the mapping between a user's mental model of a command and the
conceptual model has been emphasized in several recent analyses (e.g., Card, Moran, & Newell,
1983; Kieras & Poison, 1982; Moran, 1983; Roberts & Moran, 1983; Young, 1983). However, the
role of the system image has not been systematically distinguished from the conceptual model in
these analyses. In our analysis we emphasize this distinction, showing how the feedback expli-

citly presented to users - especially in the learning phase - accounts for a large number of
"' ,users' errors and misconceptions, independent of the command's conceptual model.

Empirical Study

Preliminary support for the usefulness of this framework has come from an empirical

study of new users learning to use a text editor fui the first time. The text editor used in this
study was the UNIX 29 screen editor "vi."

"A Procedure

Subjects were six undergraduates who had never used a word-processor before, and who
had minimal experience with computers in general. Subjects were studied individually approxi-
mately twice a week for a total of 4-5 sessions, each session lasting one hour. A typical session
involved having subjects pace themselves through a written tutorial in the presence of an exper-

"-. imenter trained in taking protocol observations. Subjects were encouraged to think aloud
while reading through the tutorial and performing the exercises. Audio, video, and keystroke
information were recorded for each session and for the test that followed the instruction.

29. Vi* is a screen oriented (visual display), command driven editor, based on 'ez.*

-.• a

N Ii1!1!1i i I .1i I . " q . t * * l ~ - " " . ~ l l i ~ u i I * Ii " ,q i i t " U



Riley and O'Malley 80 Planning Nets

GOAL PREREQ ACTrION CONSEQUENCE _

-e OALsytem tmage conceptual model

Transpose 2 Locate word 1
words

SUBGOAL.. Loc ate word 1 TyeCursor at be- Cursor at begin-
/wordl)' ginning of fling of word

word

SUBGOALb Select delete Type 'd Delete operation
operation selected

'SUBGOAIc Mark range of Type wff wordi deleted Text deleted and
________operation placed in buffer

SUBGOALd Replace word Locate end of
4, ________word2

-- SUBGOALe Locate end of Type e Cursor at end Cursor at end of
word2 of word word

SUBGOAId Replace Type P Wordi re- Wordi replaced
-~ _______word 1_____________ placed from buffer

Figure 7. Expanded version of a plonnng net.



Riley and O'Mallcy 81 Planning Nets

In the test phase, subjects were given a file to edit, which thcy were told contained
several mistakes. They were also given a printout showing what the final version should look
like. Thecy were instructed to work through the file, taking as long as they liked, and to correct
each of the mistakes they found. The corrections consisted of various core editing tasks (cf.
Roberts & Moran, 1983) that required applying basic text editing operations (insert, delete, re-

* place, transpose, or merge) to basic text objects (characters, words, lines, paragraphs). Subjects
were also given a quick reference sheet, which contained a list of the basic editing commands
which they had learned. (This was to ensure that we were not simply testing subjects' memory
for the names of the commands.) Subjects were instructed to think aloud, telling the investiga-
tor what it was they were planning to do in solving the problems. Te test lasted until the
subject had completed all the tasks, or until one hour was up.

Results

Our initial analyses have focused on subjects' test performance, relying mainly on proto-
col transcripts from the audio-visual tapes, rather than the keystroke data. Overall results
showed that subjects were correct on only 6051 of the editing tasks, in spite of the fact they
had practiced all the commands previously and had the list of commands available at all times.
We grouped subjects' errors into three major categories, reflecting the stage in the planning
process at which the errors occurred. These categories correspond closely to Norman's analysis
of the stages involved in users' activities (cf. Norman, 1984).

The first category includes errors made during the formation of goals, or what Norman
refers to as intentions. Approimately 1517 of errors fell into this category. The second
category includes errors made in the selection and/or execution of actions to achieve the speci-
fied intentions. Approximately 58% of errors fell into this category. In the third category we
included errors that resulted from an incorrect evaluation of the outcome of performing an ac-
tion. About 27% of the errors were of this kind.

* . These categories oversimplify what is really a complex and interactive planning process, and
the errors we discuss reflect this. For example, many errors in forming intentions or in select-
ing actions were clearly the result of errors in evaluation from previous cycles of activity.
Nevertheless, the categories are useful for identifying tha- stages of user activity that are not
well supported by the system, and for suggesting specific changes to improve either the inter-
face itself, or the instructional material.

Errors in the Formation of Intentions

Subjects often revealed very vaguely specified plans or intentions. We characterize this
kind of error as a 'fuzzy plan.' (This finding is similar to what Lewis & Mack call 'abduction'

-Lewis & Mack, 1982). This captures the fact that a general intention is formed but there is
no specification of that intention beyond this stage, and subjects can find no executable action
that corresponds to that intention.

* Example: The task was to insert a line of text above the first line, on which the cursor was
7-.positioned. T1he subject used the command *i, correctly, in order to enter insert mode. She

then typed the text she wanted, but realized, when she got near the end of the line, that the



. -. .. . . .. , - '_- . '- .

Riley and O-Mallcy 82 Planning Nets

old' text had to be put on the next line. This could have been achieved by typing RE-
TURN but this did not occur to the subject. She pressed the ESCAPE key to leave insert

mode, then tried to think of a way to get the 'old' text onto the next line. She could only
come up with a very vague (or "fuzzy") plan for achieving this. She seemed to have the plan
of copying the text that was on the current line onto the next line (a generalization from the

commands 'yank' and "put,' as a way of copying text):

S: I knc, , )u can copy buffer, right? Or can I just delete it then add? I know there's
some way we can erase it, then tell it to go scmewhere else. Then push a button, and
everything will be back.

Other examples of problems at the intention stage included inefficient, or overspecified,

plans. Even though subjects performed correctly on 60% of the tasks, about half of their
corrcct responses were counted as 'inefficient' plans. In other words, subjects tended to over-

specify their intentions, so that they were operating with very primitive commands, rather than
with the compound commands which would have achieved the same solution more cfficiertly.

(This is consistent with findings from, e.g., Folley & Williges, 1982, and Robertson & Black,
IWOa).

Errors in the Selection and Execuhion of Actions

There were three main types of errors in this category: errors in predicting the scope of a
command's consequence, errors in syntax, and errors in selecting text objects. An example of

each of these errors is given below:

Et nmple (Scope Error)- The task was to delete to the end of the line, including the punctua-

tion There were five words on the line, and the subject typed "d5w" (delete five words).
flowever, she did not realize that the text object 'w" does not include punctuation, so she

had an extra task of deleting the punctuation.

Example (Syntax Error): The task was to replace two words with three words. The subject
forgot how to spccify the object to the substitute command. He was confused about the syn-
tax of the command, and gave the argument as the number of spaces for the "new" text
(three words), rather than the number of spaces of the "old" text (two words).

E rample (Text Object Errcr): The task was to delete to the end of the line. The subject typed
"ds," for 'delete sentence' - generalizing from 'dw,' for "delete word." The correct com-

mand, however, is 'dd" (which is of course inconsistent).

An important feature of each of the examples in this category is that the fact an error has
been made is immediately reflected by the system image - text intended for deletion remains

on the screen (first example), text intended to remain on the screen is deleted (second exam-
ple), or the system gives audible feedback when a text object is incorrectly specified (third ex-

ample). As a result of the immediate feedback, many of these errors were corrected or the sub-

30 As *new' text is inserted in front of text that already exists, the *old* text is pushed along in front of the cursor



Riley and O'Malley 83 Planning Nets

ject was able to ask for help. The next category also includes errors in selection, but the fact
that an error has been made is not immediately reflected by the system image and therefore is
not easily evaluated and corrected.

Errors in Evaluation of Actions

The success and efficiency of the subjec.s' plans was to a large extent a function of the
mapping between the 'conceptual model' of a command and the *system image.' Difficulties
arose when the system image failed to reflect important information about the prerequisites for
selecting a command or about the consequences of executing a command.

(i) Prerequisites: There were three main types of errors involving prerequisites - the user either
neglected to take into account a necessary prerequisite of an action, had an unnecessary prere-
quisite, or had a wrong prerequisite.

Example (Violation of Prerequisite): The subject's goal was to search for a pattern (achieved by

preceding the string with 7f). However, she forgot to type the search command, thus the
prerequisite of the action was violated, and this was not noticed by the subject (even though
the system image revealed it). The error was compounded because the next two characters
typed w-re 'la.* The problem was that 'a' is the "append' command, which results in insert
mode. This was not noticed by the subject - in fact the first time she noticed the error was
when the next character 'w' was echoed on the screen. This was an example of an error
resulting from neglecting to take into account a necessary prerequisite of an action. In this
case the subject was not aware of the mode she was in. The example illustrates how errors in
evaluation can still occur even where the system provides the appropriate feedback. It also il-
lustrates how errors can be compounded.

Example (Unnecessary Prerequisite): An example of an unnecessary prerequisite occurred when

a subject thought that she had to be at the end of the line before giving the command 'dd'
to delete the line. (The cursor may be anywhere on the line in this case.)

Example (Wrong Prerequisite): Finally, an example of wrong prerequisites involved a subject
who was aware of what mode she was in (she was typing in text) but chose a command
whose prerequisite was that of being in command mode.

(ii) Consequences: In some cases a single action has more than one consequence, only one of
which may be visible to the user. As a result, subjects often associated an action with only one
of its consequences.

Example: The subject's goal was to delete a character at the end of a line. She chose the
command 'A, in order to move the cursor to the end of the line. However, this also put her
in insert mode, which she did not know, and could not evaluate because the consequence of
being in insert mode was not made visible. In this case the error was both in selecting the
wrong command as a result of learning only a partial consequence of the command *A," and
in evaluation, since the consequence of typing 'A' was invisible.

""-.-



Riley and O'Malley 84 Planning Nets

Example: Another example was where the subject typed '0' to get a new line and then typed

'd to get into insert mode. The error in this case also resulted from the subject learning a

partial consequence of a command: typing "0' does open up a space, but it also results in in-
sert mode, but not realizing this, the subject then typed the command to enter insert mode.
This error therefore also resulted from not being able to evaluate the consequences of an ac-
tion since they were invisible, and from the subject learning only a partial consequence of
the command '0.'

Another example is where the wrong action is associated with a consequence, as a result
of delayed consequences:

Example: Since the consequence of backspacing while in insert mode was delayed until after
ESCAPE was pressed, the subject thought that it was ESCAPE that deleted the text,
whereas it was the compound of backspace and ESCAPE that performed the action. De-
layed consequences, therefore, caused the error of associating the most recent consequence
with the most recent action. In this case, ESCAPE was a postrequisite for the action of eras-

ing while in insert mode.

Subjects were also confused when the intermediate consequences of performing an action
appeared to violate other goals: for example, the action of typing text while in insert mode has
the consequence of typing over existing text until a special key (ESCAPE) is pressed to ter-
minate the input mode. Again, in this case, the pressing of ESCAPE is a postrequisite for
insertion of text.

In summary, we have identified some of the difficulties experienced by users in learning
how to use a text editor, and we have related these difficulties to specific stages in the forma-
tion and execution of plans. In the next section we discuss the implications of our analysis for
improving user-computer interactions. Our focus is mainly on the problems in evaluation,
since they highlight the importance of the system image.

Implications

Intention errors: The errors in the intention category revealed that novices sometimes
have problems in mapping their general plans or high level goals into executable actions. At
other times they overspecify their goals into very primitive units. Our analysis does not provide
any specific recommendations about what might be the right level at which to implement
operations that would more directly map onto users' intentions. More research is needed to

determine this.

SelectioniExecution errors: The errors found in the selection/execution stage imply that
instructions should make more explicit such things as the scope of a command, and the rules

for generating commands (for example cross-product rules). Moreover, such rules should be

consistent.

%.r



Riley and 0OAalley 85 Planning Nets

Evaluation errors: More direct implications for improving the interface come from the
analysis of errors occurring at the evaluation stage. Difficulties in evaluation occurred when
the system image failed to reflect important information about the prerequisites for selecting a
command or about the consequences of executing a command. The direct suggestion for im-

proving the interface is to make this information visible to the user. For example, many of the
subjects' problems involved either not knowing which mode they were in before executing an
action; knowing the current mode, but selecting a command which required being in another
mode; or not realizing that an action resulted in a mode change. Here the implications for im-
proving design are that an explicit indication of mode change should be provided, and further-
more, that any such indication should be salient to the user.

One way to make prerequisites more salient is to have error messages explicitly reflect
which prerequisites are being violated instead of, for example, simply giving audible feedback
to indicate that the command cannot be executed.

Other difficulties in evaluation occurred because subjects only learned the consequences
that were made visible and failed to acquire those that were left invisible. Again, this suggests
that the consequences of actions (for example, changes in mode, the contents of the buffer)
should be visible. Making things visible not only gives users explicit feedback, but also en-
courages the development of a more coherent model, allowing users to predict, explain, and
evaluate the behavior of the system.

Our analysis also suggests that not only should consequences be made visible, but to be
associated with the correct action, they must be made visible immediately after performing the
action (or at least before another command is executed).

Summary and Conclusions

We have suggested in this paper that difficulties in learning to use a text editor may be
accounted for in terms of specific mappings and mismappings between the conceptual structure
of a command, how that conceptual structure is reflected by the system image, and how users

2...'interpret that system image in terms of their mental models. These analyses suggest certain hy-
* potheses about the knowledge required to generate efficient plans, how this relates to users 'i-

itial knowledge, and possible ways of helping users acquire more skilled levels of performance.
Further theoretical and empirical work is required to test and extend our hypotheses.

* Nevertheless, results of this exploratory study support our idea that a planning framework is
useful as a basis for developing general principles for instructing, designing, and evaluating
features of an interface.

References

Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of human-computer interac-
tion. Hillsdale, NJ: Erlbaumn Associates.

Folley, L., & Williges, R. (1982). User models of text editing command languages.
Proceedings of the Conference on Human Factors in Computer Systems. Gaithersburg,
MD.



rTW U' U i r7. - 7 __11 _71.- -

Riley and O'Malley 86 Planning Nets

Kieras, D. E., & Poison, P. G. (in press). An approach to the formal analysis Of User COrn-
K. plextity. International Journal of Man-Machine Studies.

Lewis, C., & Mack, R. (1982). The role of abduction in learning go use a computer system
* . (Tech. Rep. No. RC 9433 (041620)). New York: IBM Thomas Watson Research Center.

Moran, T. P. (1983). Getting into a system: Eternal-internal task mapping analysis. In A.
Janda (Ed.), Proceedings of the CHI '83 Conference on Human Factors in Computing Sys-.
terns. New York: ACM.

Norman, D. A. (1983). Some observations on mental models. In D. Gentner & A. L.
Stevens (Eds.), Mental models. Hillsdale, NJ: Eribaum Associates.

Norman, D. A. (1984). Four stages of user activities. In B. Shackel (Ed.), INTERACT '84.
First Conference on Human-Comnputer Interaction. Amsterdam: North-Holland.

Roberts, T. L., & Moran, T. P. (1983). The evaluation of tent editors: Methodology and
empirical results. Communications of the ACM, 26.

Robertson, S., & Black, J. (1983). Planning units in text editing behavior. In A. Janda
(Ed.), Proceedings of the CHI '83 Conference on Human Factors in Computing Systems.
New York: ACM.

Young, R. M. (1983). Surrogates and mappings: Two kinds of conceptual models for in-
teractive devices. In D. Gentner & A.L. Stevens (Eds.), Mental models. Hillsdale, NJ:
Eribaum Associates.

1'



- - " M I . I _...

Cypher 89 Activity Scripts

ACTIVITY SCRIPTS

Allen Cypher

A session with the compter can be organized around the activities of the user, rather
than around the actions of the computer. A user-centered approach to grouping stereotyp-

'""" ical sequences of cammands Into scripts or macros Is discussed. This approach illustrates

• .- ,, several Issues in HumanComputer Interactio: joint problem solving, toolltask mismatches,
ad visible effects.

The study of activity scripts is part of a larger project which is concerned with organizing
the multiple activities that a user engages in on the computer. These are not computer-
centered activities like using an editor or an electronic mail facility; rather, they are user-
centered activities like 'preparing a paper' (which entails using an editor, a text-processor, and
a file-handler) or 'learning how to kill a job" (which may entail asking a colleague and consult-
ing an on-line manual). Several issues in human-computer interaction arise in the context of
activity scripts: joint problem solving, toolltask mLmaatches, and visible effects. Activity scripts
deal with these three issues via conmads to die user, cratng program boundaries, and stepwise
programming, respectively. Activity scripts use the computer to reduce the burden on the user's
short-term memory by keeping track of information and performing actions that would other-

wise occupy the user's time and effort.

A convenient way to understand activity scripts is to compare the two activities of (a) is-
suing commands to the operating system, and (b) writing a line of a program. These two activi-
ties are quite different on current systems. System commands are typed one at a time, and
each command is executed immediately after it is typed in. In contrast, programs are created as
a whole, and the lines are only executed later, in sequence. The reason for this is clear most
of the things that we want an operating system to do can be accomplished in a single step,
whereas programming is almost by definition the process of grouping together a series of com-
mands to perform an action which cannot be accomplished in a single step. This at least is the
conventional view of commands and of programs. But in fact, there are many cases where we
want to group together sequences of commands to the operating system. And there are many
cases where we would like to execute the lines of a program one at a time. Since these two ac-
tivities are very similar from the user's perspective, it seems useful to attempt to provide a uni-
form means for performing them.

We would like to counter the notion that entering commands is not programming, and
likewise to counter the notion that programs must be composed in chunks prior to executing

.. them. Our work to date has been concerned with the implications of the former statement.
Future work will explore the latter issue of applying 'stepwise programming' to conventional
programming languages.

Pursuing the notion that typical interactions with the computer system constitute pro-
grams of some sort has lead to several interesting ideas about human-computer interaction.

5,-.

n - .... * Sn *h nt*lna .ln ** **nn tnal:..,*t t m.



6: u

'- Cypher 90 Activity Scripts

K an•First, we view both the user and the computer as resources which can be used to perform

an activity. This means that activity scripts will include some steps which the computer is to
perform, and other steps which the user is to perform. This idea came from our empirical stu-
dies of command sequences. As an example, a user might ask the computer to display a list of
current processes and their associated ID numbers. In the next command, the user will then is-
sue a command to kill one of the jobs, which requires specification of the associated ID
number. This sequence of commands could ideally be written as a program, except that it is
quite difficult to write the code which searches for the job name and then returns the associat-
ed ID number. Nonetheless, that task is quite simple for a person to perform, and so the pro-
gram is simple to write if we include a commad to the uer; a command which the user is to
carry out. This is the essence of joint problem solving.

Second, viewing activities from the user's perspective leads to many activities which re-
quire the use of several different programs. This means that many sequences of commands will
cross program boundaries. The fact that boundaries arc crossed implies that the tools available

to the user do not coincide with the user's conceptualization of the task. That is, there is a
tool/task mismatch. If the user is permitted to create an activity script which crosses these pro-

gram boundaries, that script will henceforth serve as a tool which coincides with the user's im-

age of the task. The activity script smoothes over the seams between the different programs.

Third, we intend for users to create activity scripts simply by entering commands one at a
time, as is customary. For instance, a user may execute several commands which search

through the files in the current directory, locate those containing a particular string of text,

and then move these files to another directory. If, sometime after this activity is performed,
the user decides that this particular activity may have to be performed again in the future, that
sequence of commands can be taken from the "history list" of previous commands and gathered

into a script. This is the basis of stepwise programming. Of course, it is unlikely that the future
use will involve the same search string or the same directories. A facility is therefore provided

'* "' which allows the user to specify words or phrases in the script which are to be variablized: con-
verted into variables. In this way, programs ane written by performing the sequence of com-
mands once, and then later deciding how to generalize the sequence. Since each command is

• .actually executed during the first-use phase, the consequences of each command are immediate-

ly visible effects.

3-. •

• .

92.



Greenspan and Smolensky 93 DESCRIBE

DESCRIBE:
ENVIRONMENTS FOR SPECIFYING COMMANDS

AND RETRIEVING INFORMATION BY ELABORATION

Steven Greenspan and Paul Smolensky

In communication between people, objects and events are principally referred to through
description. This paper argues that the basic principles that make such reference by
description possible can also be employed in communication between people aud compu-
ers. A new type of operating system called DESCRIBE in which comnmands and files
are referenced by description (as well as by nae) is proposed. 31

Many operating systems do not offer users any way of retrieving files or specifying com-
mands other than by name. For users who have no idea what a file or command name is, such
systems offer no systematic help except structured exhaustive search (such as through a file
hierarchy).

There is an attractive alternative to reference by name that is exploited to a tremendous
extent in natural language. reference by description. In order to simulate the advantages of
reference by description within a system of reference by name, the concept of "name" has some-
times been grotesquely distorted. 32 For example, a typical complete uNM 33 filename,
Icsllpallpdplmontelasynchiialt.o has crammed into it (from left to right) information about the
file's disk location, creator, research project, research subproject, algorithm variant, contents
(nit = "initialization routines"), and type (o - "object code). The file "name" has become an
idiosyncratically and unsystematically encoded description containing information that is of
value to users only if they possess a fair amount of idiosyncratic knowledge and of almost no
use to the machine.

As an alternative, we propose a system called DESCIBE 3 that systematically keeps track
of this kind of descriptive information in forms usable by both machine and user, thereby fa-

31. This rmearch was supported by a pant from the System Development Foundation, by contract NGO014-79.C.0323,
NM 667437 with the Peronnel rnd Traini Rmemh Propsams of the Office of Naval Raeasch. and by Grant PHS
MH 1426 to the Center for Human Information Processng from the National Institute of Mental Health.

32. For a related discussion, s Norman (1983).

33. t m is a trademark of Sell Laboratories. The comments In thia paper refer to the 4.1USD version developed at

the Universty of California, Berkeley.

34. oecaimm is a recursive acronym for the title of the paper.

0I.



Greenspan and Smolensky 94 DESCRIBE

cilitating communication. DESCRIBE provides an environment that supports reference by
description in communication between human and machine. We find it helpful to view this
environment in light of the natural environment that supports reference by description in com-
munication between humans. In natural language, the primary concern is the description of
events, which in turn requires the description of the objects participating in these events. Prac-
ticality demands that descriptions be of manageable length; in interpersonal communication,
this is achieved by both speaker and listener taking into account the relevance of the objects
and events in the immediate context.

Table 5 indicates the relations between these natural language concepts and those present
in DESCRIBE. For comparison, approximately corresponding UNIX concepts are also indicated.
Each of these correspondences will be considered in turn.

Object description in natural language corresponds to file description in DESCRIBE. In
DESCRIBE there are several kinds of file descriptors: types, properties, and relations. These are
the analogs of the object descriptors that appear in natural language- common nouns, adjec-
tives, and relational predicates, respectively.

Common nouns classify objects and play a crucial role in object description. In
DESCRIBE, a similarly central role in file description is played by file type descriptors such as
text, lisp source, message. Like common nouns, file types form a rich classification hierarchy. 3

The objects in a given noun category can be described by certain associated adjectives.
An adjective, such as enormous, can be thought of a a value, extremely positive, for some pro-
perty, size. In DESCRIBE, a single file can be described by specifying values for a number of pro-
perties like creator, project, protection. Values can be specified at a variety of levels of detail;
the possible values for each property form a hierarchy. The properties applicable to a file are
determined by its type. For example, the properties specifically applicable to files of type mes-
sage, include recipients, header, and reply to.

Describing an object with a relational predicate amounts to specifying a relationship
holding between the object being described and some other object(s). In DESCRIBE, files can
be described by specifying relationships to other files through relations such as revision of,
response to, or compilation of.

35. It is important to remark that many of the capabilities of Descitm can be achieved - and in many cases already

are achieved - in other ways. Our claim is that out analysis provides a mur u/. coheret framework that cua lead to

enhanced human/machine performance. The approach can be viewed u part of the investigation by the UCSD HMI
Project of a general and powerful hypotbesi: human/machine performance can be augmented by making available
within th machine some of the merta-information that now only users poe. about the objects and activities they
create in the machine. The UCSD Project uses the UNX operating syam as its point of departure.

36. In a ousctamE hiearchy." nodes may have multiple parents (e.g., a project IFIP abstract that is a subproject of

two other projects IFIP paper and progreu report). A more precise term would be 'directed graph.*

37. Files of a given type inherit the applicability of properties from their ancoon in the file hierarchy.



Greenspan and Smolensky 95 DESCRIBE

Table 5

Human/Machine Communication
- Interpersonal
-Communication DESCRIB UNIX

Object description File description File naming
(multiple hierarchies) (multiple hierarchies) (single hierarchy)

Event description Process description Command line

Context Workspaces Current working directory

.4h



Greenspan and Smolensky 96 DESCRIBE

Descriptors allow users to describe files rather than name them. Descriptors also serve
to organize files: the hierarchy of values for a given property induces a hierarchical organiza-
tion of all files from the perspective of that property. By focusing on various perspectives,
users can dynamically choose from among the many such organizations those best suited to the
present need. In this sense, each property corresponds to the hierarchical file organization
(directory structure) of UNIX. As the example of the second paragraph shows, the independent
classifications offered by the properties of DESCRIBE must be jumbled together haphazardly in
typical UNIX hierarchies because only one such hierarchy is available.

In DESCRIBE, description forms the basis not only of file retrieval but also of command
specification. Specifying a command is viewed as requesting the operating system to create a pro-
ceus matching a given description (see O'Malley ct al., 1983; Smolensky, Monty, & Conway, 1984).
Describing a process corresponds in natural language to describing an event. Such descriptions
entail classifying the event with a verb, possibly qualifying the event with an adverb, and spcci-
fying for each role in the generic event the object that fills that role in the particular event.

An event is approximately classified by a verb; a process is precisely classified by the exe-
cutable program it runs. This classification forms a natural extension, from files to processes,
of the concept type. The "options" in command specifications correspond to adverbs, and form
a natural extension of the concept of property from files to processes. Finally, the files that
serve as arguments to commands correspond to the objects filling roles in generic events. The
links between these argument files and the process being created comprise a natural extension
of the concept of relation to include those that involve processes as well as files. Thus, for ex-
ample, the UNIX command line cc -0 foo.c -o run becomes in DESCRIBE a description of a pro-
cess of type compilation with: property optimize? set to true, relation source code assigned to the
file named f oo, and relation executable progran set to a file named run. 3

Thus the same framework that was needed to support file description suffices for process
description, i.e., command specification. To summarize: DESCRIBE permits users to describe
both types of structures - files and processes - using relations that associate structures with
other structures, and properties that associate structures with values. Furthermore, structures
have types that determine which properties are applicable to them.

Descriptions must be kept manageably short ii they are to be useful. One source of econ-
omy in DESCRIBE takes advantage of the selection restrictions that hold between processes and
files. Whenever a file is being described as part of a command, the range of possible file types
is delimited by the role (i.e., relation) that the file fulfills. (So if several files named foo exist
but only one is of type source code,foo alone suffices to describe the file satisfying the relation
source code for a compilation process.) ao

38. Nme is just one of many properties for which files have valuta.

39. The files could of course be described rather than naned.

40. Two important corollaries of this observation further indicate the value of typing structures. If the only file
matching a user's description ha the wrong type to satisfy process relation, a meaningful error message can be of-
fered and the often undesirable results of running a program on an inappropriate file avoided. Secondly, semantical-
ly closely related operations (such as pretty-printing Lisp code and pretty-pinting C code) that must be implemented
differently for different file types can be fused into a ingle command, with different impl-mentations invoked
depending on the type of the given file.

r1



Greenspan and Smolensky 97 DESCRIBE

Descriptions are kept manageable in natural circumstances largely by the limitations im-
posed by relevance. In DESCRIBE, the set of structures relevant to a particular working en-

vironment are brought together by a user into a workspace. Workspaces are defined primarily
as hierarchically organized collections of functionally related files and processes, and are used

to help organize the activities and goals of the user (see Bannon, Cypher, Greenspan, & Monty,

1983). Within DESCRIBE, workspaces are constructed through a readily user-expandable set of
values for the relation member of. Descriptions that would be ambiguous in the absence of

context are disambiguated by finding a plausible referent in the current workspace. This func-
tion is performed in UNIX by the concept of current working directory. 't

The well-defined characteristics of a workspace can be used to automatically assign de-
fault values to some properties of the structures created within the workspace; in effect, each
workspace is a personalized computing environment tailored to support work on a single task.

This, together with the significant number of properties that are determined by those processes

that create structures, controls the burden on the user of describing structures as they are
created. It is also important that file descriptions can be added long after creation time, as the

needs of file organization grow and change.

In conclusion, reference by description offers an attractive alternative to reference by
name as a basis for operating system design: it provides much of the power and flexibility
found in interpersonal communication. We emphasize that despite the pervasiveness of natural

language analyses throughout this paper, we are no proposing any form of 'natural language in-
terface.' Rather, we are suggesting that the abstract structures underlying communication and

reference in natural discourse offer a sound foundation for communication between human

and machine.

References

Bannon, L., Cypher, A., Greenspan, S., & Monty, M. L. (1983). Evaluation and analysis of

user's activity organization. In A. Janda (Ed.), Proceedings of the CHI '83 Corference
on Human Factors in Computer Systems. New York: ACM.

Norman, D. A. (1983). Design principles for human-computer interfaces. In A. Janda

(Ed.), Proceedings of the CHI '83 Cooference on Human Factors in Computer Systems.

New York: ACM.

O'Malley, C., Smolensky, P., Bannon, L., Graham, J., Sokolov, J., & Monty, M. L. (1983).
A proposal for user centered system documentation. In A. Janda (Ed.), Proceedings of
the CHI '83 Conference on Human Factors in Computer Systems. New York: ACM.

Smolensky, P., Monty, M. L., & Conway, E. (1984). Formalizing task descriptions.
Manuscript submitted to the IFIP Conference on Human-Computer Interaction. (Lon-

don, September 1984). Also included in this technical report.

41. to uNix. the grouping of files for descriptive purposes and for working purposes am confounded within a single
directory hierarchy. In oesc-itm, these functions am independent.

4N



Bannon 101 Expert Systems

CAVEATS ON THE USE OF EXPERT SYSTEMS

Liam J. Bannon

Recently we have witnessed a round of assertions and counter-assertions about the capabil-
ides of applied Artificial Intelligence, specifically in the area called 'knowledge en-
gineering,' where scientists are involved in the building of so-called 'expert systems' that
are designed to mimic the performance of human experts in certain domains. Strong
claims about the potential social benefits of such systems are being voiced by people within
the Al community, but what is especially interesting is thait the business world has decided
to invest in these Al developments. The questions I wish to pose concern the potential so-
cial ramifications attendant on the widespread use of these expert systems.

What are expert systems? In brief, expert systems consist of a 'knowledge base' which
consists of large numbers of domain specific rules together with some form of 'inference en-
gine' which can draw inferences from the corpus of rules in the database. Current technical
debate focuses on such issues as the wisdom of a clear separation between data and inference
procedures and the relative strengths of different knowledge formalisms. One problem in the
area comes from the fact that much of the reasoning of human experts is done under condi-
tions of uncertainty, which therefore rules out the use of such powerful inferencing systems as
the predicate calculus. Another stems from the size of the solution space--even in quite nar-
row task domains it is liable to be vast, ruling out simple search methods such as exhaustive
search. Expert systems must therefore incorporate heuristics to reduce the search time and
make the problems solvable. (See Davis, 198, and Stefik et a[., 1982, for a technical introduc-
tion to the area.)

Typically, the knowledge or 'beliefs of the expert system are built up painstakingly
through interactions between AI researchers and experts, involving numerous iterations with
the evolving system, adding new knowledge to the system until its answers appear to model
those of the experts in some consistent fashion. Over the course of time, it appears to be pos-
sible to build a system that has quite impressive deductive powers in a limited domain. (See,
for example, the DENDRAL (Lindsay et a[., 1981) and R1 (McDermott, 1981) systems.)

Mv concern is that rather than being seen as legitimate research tools that might further
our understanding of knowledge representations and the nature of human expertise, these ex-
pert systems may be viewed from a narrow economic perspective as simply reducing the need
for highly-trained specialists. This could lead to problems on several levels. The nature of the
human-machine relationship could be adversely affected, as the less-skilled operator of the in-
telligent system might feel unable to query the finding; of the system, and unable to under-
stand the reasoning behind the system's decisions, even if the system could provide some expla-
natory capability. It is also possible that the system might give information, or suggest courses
of action, that are unsuitable to the client's specific needs due to a misperception of the origi-
nal problem. Of course, human experts are fallible also, but they do bring a variety of talents

*Q to bear on a problem that are as yet untouched by expert systems.

V.

9¢

- Y%"-* K %%.

.-. A.



Bannon 102 Expert Systems

As Flores and Winograd (in preparation) have noted, the label 'expert system' has
misleading connotations, as expert systems are in about the same relationship to real human ex-
perts as are idiot savants. They state that one does not refer to an 'idiot savanto as an expert,
precisely because the capabilities of the idiot savant are so limited to a particular domain,
showing no generalization, and inflexibility. Human experts differ from expert systems, not
only in being able to 'go beyond' their rules and restructure their knowledge at certain crucial
points, but also in being able to reflect on their knowledge, and they are always located in a
social context which influences their decisions. This sensitivity to the social and cultural con-
text of the situation is especially crucial in situations involving medical diagnosis and treat-
ment.

This is not to say that "expert' systems are useless, only that their successful use will be -
confined to narrowly defined domains, where there are a limited number of objects in the task
domain, and a well-specified set of relations between the objects. The designer of the expert
system has to explicitly encode these relations into the system, and the system will always be
constrained by the omissions of the designer. Of course, new "knowledge' can be added to the
system when a problem occurs, but only if someone explicitly changes the system. This points
out a fundamental limitation of these systems; they cannot, at least to datc, learn from their
experience, a prerequisite for any truly 'intelligent" system.

If we bear these points in mind, and reflect on the use of expert systems in such sensitive
domains as medical diagnosis and treatment, one can see why there are reservations in allowing :
an expert system to operate in an essentially autonomous fashion. It is impossible for any sys-
temn to be able to take into account the full context of the situation, as in any person-to-
person encounter there are a myriad of potential signals that, on any one occasion, might be
important in diagnosis or treatment of the patient. What is and what is not relevant is ex-
tremely difficult, if not impossible, to determine in advance, and thus any technical system will
be bounded by the inventiveness of its creator, no matter how insightful that person is. This is
not to argue against the use of computer systems in the diagnostic process but to assert that it
should be under the control of a fully trained physician who feels comfortable in "going
beyond" the system on occasions. The specter of poorly trained medics in supplication to I
'THE EXPERT SYSTEM" which they have been told holds all relevant medical knowledge
strikes me as fundamentally unsettling, both from the point of view of the medics themselves,
in their feelings of loss of control over the situation, and of the patients, in their feelings of
uncertainty about the treatment suggested. It brings to mind the scenarios explored by writers
such as E. M. Forster in his short story The Machine Stops, of an unbounded autonomous tech- -

nology which has gone beyond human control and comprehensibility.

My argument is against certain "non-expert' uses of expert systems, but unfortunately, I
believe that it is these kinds of uses that are of potential interest from a commercial stand-
point, as expert systems are seen as one way to reduce the high costs involved in the utiliza-
tion of human experts. I am concerned that potential users will ignore the risks involved in the

"4 rneral use of fully automated diagnosis and treatment systems. When serious mistakes occur,
as they inevitably will, one can see the technicians saying, as those at Nuremberg did: 'I was
only doing my job; this is what I was told to do (by the State, or the expert system)." (See
Weizenbaum, 1976, for an elaboration of the potential misuse of complex computing systems.)
There comes a time when people do not feelI in a position to override the system, or else shield
themselves from decision-making responsibility under the guise of machine dictat.



J.11L

Ban non 103 Expert Systems

* - In summary, this is not an outright attack on technology, or even Al, but a cautionary
note against an uncritical view of the social benefits to be gained by automating the capabilities
of human experts in every field of human endeavor.

References

Davis, R. (1982). Expert systems: Where are we? And where do we go from here? Al
Magazine.3, (2), 3-22.

Flores, F., & Winograd, T. (in preparation). Understanding computers and cognition.

Forster, E. M. (1928). The machine stops. In The eternal moment and other stories. Har-
court, Brace and World.

Lindsay, R., Buchanan, B. G., Feigenbaum, E. A., & Lederberg, J. (1981). Applications of
Alif or organic chemistry: The DENDRAL project. New York: McGraw-Hill.

4 McDermott, J. (1981). Ri: The formative years. A/ Magazine. 2, (2), 21-29.

Stefik, M., Aikins, J., Balzer, R., Benoit, J., Birnbaum, L., Hayes-Roth, F., & Sacerdoti,

E. (1982). The organization of expert systems: A tutorial. Artificial Intelligence, 18,

Weizenbaum, J. (1976). Computer power and humnan reason. San Francisco: W. H. Freeman.



Draper and Norman 107 Software Engineerng

SOFTWARE ENGINEERING FOR USER INTERFACES

Stephen W. Draper and Donald A. Norman

The discipline of Software Engineering can be extended in a natural way to deal with the
issues raised by a systematic approach to the design of human-machine interfaces. Two
main points are made: that the user should be treated as part of the system being
designed, and that projects should be organized to take account of the current (small)
state of a priori knowledge about how to design interfaces.

Because the principles of good ser-interf ace design are not yet well specified (and not
yet known), interfaces should be developed through an Iterative process. This means that
it is essential to develop tools for evaluation and debugging of the interface, much the
same way as tools have been developed for the evaluation and debugging of program
code. We need to develop methods of detecting bugs in the interface and of diagnosing
their cause. The tools for testing interfaces should include measures of interface perf or-
mance, acceptance tests, and benchmarks. Developing useful measures is a non-trivial
task, but a start can and should be made. 42

Introductlon

The subject of this paper is the extension of Software Engineering to deal with the issues
raised by the design of human-machine interfaces. To a large extent, all that is needed is to
take the problem of engineering the user interface as seriously as any other part of software en-
gineering and to apply to it the same kind of techniques, appropriately adapted. For instance,
although the interface is implemented in software, it can be thought of as being 'run* on hu-
man users. This means that we must modify our concept of a program bug to allow for part of
the system to be a person; we must establish new performance criteria for the combined
human-plus-interface system. Much of the thrust of this paper is simply to draw analogies with
existing software practices in order to suggest how to support a professional approach to inter-
face design. We do not present detailed ideas on what interfaces should be like, 43 but rather
sketch some consequences for software engineering when interface design is taken seriously.

There are two themes in this paper., arguing by analogy with existing practices to their ex-
tension to interface design; and arguing from the nature of the problems of interface design to
requirements for an appropriate engineering discipline. The first part of the paper makes some
general points, the second summarizes their consequences for the coding, documentation, de-
bugging, and testing phases.

42. Published in the Proceedings of the Seventh Iternational Cta 'tence an Software Engineering. (Orlando, Floride,
March 1984). We thank Tony Waserman, Eilea Conway, and Soadra Buffett for their assistance with the

manuscript.

43. We leave out of this paper any major discussion of what a human-computer interface ought to be, or what the

general problems or principles are, because this topic is ecplored in numerous other papers by us and by the growing
community of people who work in the field called uaman.Cupvaer Interaction. This field now has an annual met-
ing, several journals, and an ACM Special Interest Group (SIGCHI): we see no need to cover the material here. See,
for example, the Proceedings of the CHI '83 CoFqerence on Huana Factors in Computing System. This paper concco-
trate on the lessons that can be applied to iatrerface design from practices already common in Software Engineering.

. .. - . -. . . . . . .-

. ."-" .'- ". . . ". ". ".-- " .,, - "- -. - -- -"." "" - '7 "."• " P " -" ,""-"" "- a . .--.- ... .- .,.",*,' ,,f .,-.., .. :".,N ,",,".: , :., m,, ' .,2'



Draper and Norman 108 Software Engineering

Software Engineering for Hurnan-Computer Interface Design

Two Goals in Optimizing an Interface

We begin with a tradeoff that has clear parallels to aspects of software engineering, the
tradeoff between two quite different broad aims for an interface:

* Achieving speed and convenience of use (power) for the practiced user;
0 Achieving case of learning and use (ELU).

These distinctions are related to the familiar novice-expert distinction. There is a clear analogy
between these aims and the desire to optimize space and time in software performance. In gen-
eral it is desirable to optimize both aims, but beyond a certain point, the engineer must choose
a particular tradeoff between the two. This analogy holds quite closely. Not only is there a
reasonable region where one aim trades off against the other, but, at the extremes, the pro-
grams can be generally unusable.

Consider the extremes. Suppose we optimized program speed or interface power. Just as
a fast program that requires more space than any customer can afford is in practice useless, so
too is an interface that provides immensely fast and "powerful' interaction, but at the cost of
requiring such a level of skill that no user will actually be able to use it because of the difficul-
ty of learning it presents. Similarly, if we optimized program space or ELU, the program
might be too slow to use regularly (no matter how economical of space) and the interface can
be too laborious for a regular user to employ productively, no matter how safe, 'friendly,"
helpful, and easy to learn. If we avoid the extremes of these dimensions, then thcre is a wide
range of choice for the designer. The existence of programs of similar function on micropro-
cessors and large mainframe computers is a strong reminder that we can tradeoff both in the
space-time domain for the software and in the powerlELU domain for the user interface.

User and Program as Communicating Co-Routines

When a programmer implements a system with a user interface, he or she is not only de-
fining what the machine will do but also defining what the user can do. The program and user
can be thought of as co-routines, each communicating with one another. The programmer
must explicitly or implicitly decide what actions and information will be available to the user.
For any given interface, this point can be illustrated by drawing a flow chart of the user's part
of the process. Although this point seems simple, it changes the fundamental (though usually
unacknowledged) situation by which programming takes place. No longer are programmers en-
gaged in the private task of getting the machine to do something for themselves - they are not
even engaged in communicating a program to other programmers, a view intermittently voiced
by purist programmers. Instead, the interface designer should be viewed as someone who must
write a successful co-routine between user and machine, yet where the full specification of the
user side of the co-routine is not well known (and may be variable): this is the real subject of
the design, and this must become the conscious objective.

There are two consequences to this point, both discussed in greater detail later in the pa-
per. First, we need languages that support this view, that is, that represent this co-routine
directly. Second, the interaction needs testing and debugging on typical 'hardware,* hardware

...................................................



Draper and Norman 109 Software Engineering

that includes representative users.

The State of User Interface Design

How much is known about how to design interfaces? We must answer this question in
order to plan a sensible software engineering strategy. If enough is known to lay down detailed
principles, then a top-down strategy might be followed; otherwise an iterative strategy must be

adopted with emphasis on the testing and debugging phases.

Quantitative principles. Top-down principles of design should, in the ideal case, allow a
design to be worked out in advance rather than entirely by trial and error. These tools need to
be developed from a solid basis in experimental psychology, coupled with a good understanding
of programming and software design. Not surprisingly, the number of groups capable of this
work is limited and not much yet exists. There are now several initiatives whose goal is to pro-
vide quantitative principles for the design of human-computer interfaces. For example, one of
us has shown how it is possible to develop a quantitative assessment of how design tradeoffs
affect the User Satisfaction for an interface (Norman, 1963). Thus, in trading of time, informa-
tion, and workspace, it is possible to compute the tradeoff space, showing the psychological
impact of tradeoffs in these variables. A complementary approach is that of Card, Moran,
and Newell (1983) who provide a set of quantitative tools for computing the operational
parameters of interfaces.

The development of psychologically based, quantitative design tools is still in its infancy
and much work remains to be done, both in development and in validation. If we can develop
sufficient range and breadth of quantitative design tools, then we can look forward to a time
when it will be possible to provide general principles and even tables of numerical values in
design handbooks, allowing such design considerations as workspace size, display time, menu
structure, command language design, pointing-versus-naming, interface power, and ELU to be
assessed at the design stage, without the need to build a test system. For the present, however,
the designer, by and large, does not have quantitative data at hand.

Qualitative principles. In the absence of well-established quantitative design aids, we
need methods that allow us to work with qualitative principles. A large number of qualitative
principles exist, many in the form of 'slogans," exhorting the designer to consider this factor or
that, or to avoid this failing or that (see for example, Badre & Shneiderman, 1982; Nievergelt,
1982a, 1982b; Shneiderman, 1980). These qualitative rules are often quite reasonable (which
makes it especially discouraging to see how frequently even the most obvious and elementary
principles are violated in existing systems), although if the design of a user interface is ever to
proceed in a systematic fashion, we need to go beyond this level.

One major example of the attempt to base a system design on fundamental design princi-
pies, built in such a way as to capitalize on the user's existing knowledge is the design of the
Xerox Star system (Smith, Irby, Kimball, & Verplank, 1982). This design attempted a systemat-

*' .ic strategy based on principles of good human-computer interaction. Since then, of course,
other systems have been developed along similar principles (in particular, the Apple Lisa sys-
tem). The Star illustrates the delicate tradeoff decisions that must be faced: the attempt to op-
timize ELU led to degradation of performance, especially in speed of the system, as well as to
a high selling-price.

4.. "
.0

-L' 2 4



Draper and Norman 110 Software Engineering

KSpecifications for Interfaces

In defining and addressing a software project two questions must be tackled: what kind
of specifications are reasonable for defining the project?, what kind of divisions of the project
into subtasks are likely to be viable? The same observation applies to both: specifications are
determined at an early stage and must remain constant if massive re-writing is to be avoided.

Sheid (1983) argues against the utility of a Structured Programming approach to user inter-
face design. Sheil points out that whatever the virtues of that approach, it depends on having
a clear and fixed specification at the start. T1he technique becomes strained whenever the
specifications change during the life of the software. Although in the ideal case a Structured
Program practitioner would re-do the whole design and implementation at every change in

- specification, in practice the investment in the existing code and design exerts an enormous
pressure toward piecemeal change, i.e., toward iterative redesign. In areas where such shifts in
specification are common, it seems better to face the fact that development will in practice be
iterative. Sheil suggests - and we agree - that interface design is one such area.

Several consequences follow from this point of view. First, it will be unwise to allow any

* details of a user interface to appear in the project specifications: for instance instead of giving
a list of the commands to be implemented, specifications should rather be of the form dis-

* cussed by Shneiderman (1982), who suggests instituting acceptance tests for interfaces such as
'after 75 min. of training 40 typical users should be able to accomplis 8D% of the benchmark
tasks in 35 min. with fewer than 12 errors.m A professional approach to user interface design
puts the responsibility with the designer, having the user or customer specify performance re-

* quirements rather than details, just as in Shneiderman's hypothetical acceptance test. This
leaves the design of the interface to the software team, but with explicit standards for the
specification of the performance of the system.

A second consequence is that we must expect to have to go through many iterations on
details of the interface. If the overall project is to be subdivided by dividing the system into
modules that are separately designed and implemented, then a third consequence is that the
user interface should be segregated into a single module which all other modules must use if
they communicate with the end user.

* . Separating interface design from program design. This strategy consists of isolating
_ the main program in one set of modules, the user interface in another, and considering the user

as comprising a third:

Interface Program
User < <=

Module Modules

The virtue of this view is well known in the software engineering community: a long a the
communication structure and the data representation are well specified and adhered to, the
modules can be worked on independently and changed at will, without any effect on the rest

% of the system. The communication between the Interf ace and the Ulser can be changed in any
A,.. arbitrary manner as long as the communication between the Program and the Interf ace is not
.1 affected. This requires, of course, that the only part of the system that may interact directly
* with the user is the Interf ace Module. A well-defined protocol between the main program and

p9%



Draper and Norman 111 Software Engineering

the interface module can be defined at the outset, leaving the interface designer free to change
the interface without interfering with the independent development of the main program. An
important benefit of this modularization strategy is that it allows separate specialists to work
on the main program and on the interface module.

". A good example of this modularization combined with support for a heavily iterative ap-
proach to developing the user interface is provided by the database and interface packages
Troll/USE (the database: Wasserman, van de Riet, & Kersten, 1982) and RAPID/USE (the inter-
face package: Wasserman & Shewmake, 1982). TrollUSE is a relational database - the "main
program" module. RAPID/USE is a tool for the design of interactive dialogues and systems, al-
lowing for rapid modification and experimentation of the interface (through a transition net-
work specification), yet maintaining constant the necessary communication protocol to the da-
tabase, Troll/USE. Clearly the design of a database requires different skills than designing a
user dialogue, and in fact RAPID/USE is designed to allow non-programmers to design the di-
alogue using a simple interpreted language. Other examples are the DMS system (Roach et
al. 1982) and the work by Buxton et al. (1983).

-" . Makeup of interface design teams. A further consequence of the special nature of in-
terf ace design affects the organization of the design team. If the principles of interface design
were developed to the point where their application required no personal expertise, and if the

1' tradeoffs were all identified and quantified in advance, then a split between groups of experts
might be workable. It is noticeable that some of the more successful interface designs (e.g.,
the Xerox Star and the Apple Lisa) have been done by teams which included people with
diverse talents and training, but which did not make a distinction between evaluators and im-
plementors, between psychologists and programmers. We interpret this to indicate that at the

* present time the closest cooperation is required to identify and resolve the unexpected trade-

offs that surface in the course of a design. Many design questions are at heart unforeseen
tradeoff decisions, and these can only be reasonably made by people who appreciate all the fac-

- - tors involved. This, although a separation of the interface from other program modules is
*' "highly beneficial, and although logically the skills required for designing each are quite dif-

ferent (e.g., dialogue design versus application programming), it seems that the unknowns in in-
terface design continue to demand close cooperation between parts of design teams.

Influences of the Interface on Code

Languages for User Interface Design

We have argued that interface designers need to be aware that they are designing a dialo-
gue, and more than that, a co-routine between user and computer. The idea immediately fol-
lows that special languages that represent this view would be an important aid. Certainly con-
ventional languages are poor in this respect because they are machine-centered: they describe

events arount the sequence of machine actions with input and output seen as side-effects.
Wasserman's RAPID/USE system offers the designer a language based on Transition Diagrams,
where nodes correspond to a machine state and the output displayed at that point, and the
various arcs from a node correspond to alternative user inputs. This is a major step in the right
direction. It is perhaps not a complete solution because it is essentially a representation of the
machine the user sees (as a quasi-finite state machine) rather than of the co-routine. The user's
processes are only implicit (though much easier to see than in ordinary languages), and machine
actions are represented only as side-effects of transitions. Until further advances in this area

4'.- o

k. ..............................................



Draper and Norman 112 Software Engineering

are made, exercises such as flow-charting the user's decision-making and actions will remain im-
S""portant.

The Interface to the User Module

We have argued that the user should be viewed as a module of the system. Good pro-
gramming practices now demand that one establish a uniform communication protocol early in
the design phase and stick to it. Part of the rationale is economy - if module U has to use
one protocol for interacting with module A and another for module B, it will take more code
to do so. (Or, by analogy, if you think of module U a being the User, then the user has more
to learn.) In addition, there is scope for confusion and error in the programming if there is
not a uniform protocol (in the analogy, the lack of consistency makes it harder for the user to
learn and to apply the protocols).

These arguments apply best to low-level user protocols. The more programs use a given
protocol for interaction, the more benefit the user gains from the associated set of skills in us-
ing it (i.e., from their associated "subroutines'). Thus a user is helped if all parts of the system
use a small number of common protocols for interaction, protocols that the designer can think
of as corresponding to subroutines in the user's mind."

It is not sufficient to think of the user as a simple system module with a single protocol
for interacting with other modules. There are many layers of protocol, just as there are in
computer networking. At least three levels may be distinguished: (1) the low-level protocols
just discussed; (2) the conceptual model of the domain the designer wishes to present to the
user; and (3) the highest level where the user has several concurrent goals (e.g., to send a letter
or get a budget analysis) and the computer is one means to the ends. Most of our knowledge
about human-computer interaction is at the first two levels: little is understood/known about
the highest level of user goals. The Xerox Star, the Apple Lisa, and Visicaic can be seen as
paradigm examples of the second level in that the system image was decided early on as a major
design decision which defined the context in which the rest of the interface was developed.

Standardized Packages

" ., A major development tool would be the creation of various packages for doing standard
interface operations. There are two separate motivations for this:

* To provide a language at the right level for the designer (where the operations are
elements of user interaction and lower-level details can be hidden);

" To provide standard modes of interaction across the system to help the user.

The first provision helps the designer to work on the design of the interface undistracted by
implementation details. The second provision gives a standardization (consistency) across ap-
plications that helps the user, as argued above. Simply providing packages is often enough to
get standardization - it makes it easier for a programmer to conform than to dissent. There is

44. A major problem here is to enmate a match between the actions eapected of the user and the capabilities of that
ua. This is one of the major themes of research on human-computer interaction, uad is a non-trirai problem. [n
general. we would submit that here is where the software designer must interact with a human-factors or psychology
software designer - during the design phase - to develop the specifications of the user actions.

V



Draper and Norman 113 Software Engineering

great need for software tools for interfaces, including screen management, user-program dialo-
gue, and packages for doing help, argument parsing, history, and undo. A good example is
Perlman's (1983) general interface package.

Documentation as an Integral Part of the Interface

An obvious consequence of integrating user interface design into the overall software en-
gineering is to integrate documentation and code generation. Mashey and his colleagues at Bell
Labs have taken a major step in this direction by using the same file control system for both
source code and documentation (Bianchi, Glushko, & Mashey, 1982), thus promoting their

* simultaneous development and allowing immediate checks on whether one is out of date rela-
tive to the other. Knuth's recent work is along the same lines (Knuth, 1983). This is most
likely to benefit other programmers (rather than users) who will have to maintain the code,
since they are often the major beneficiaries of complete and correct documentation. However,
if it is true that no interface design is likely to remain fixed for long, then it is not enough for
it to be friendly to the user - it must be friendly to its maintainers as well.

Thne term 'documentation" should not be viewed too narrowly. Users get information
from a number of sources including manuals, tutorials, error messages, and normal displays.
One test of the adequacy of the overall documentation is to introduce an error in the opera-
tion of the system while observing a "typical' user in a 'typical' situation. The observation of
interest is to determine how the user copes with the situation: the design fails the test if the

* user cannot recover gracefully. It is important to note how the user determines the state of
the system and the options that are available, and also to observe what the user actually does
(which may be quite different from what the designer had in mind).

SThe success of the system will visually depend on a combination of information sources
* and is neither a property of the code alone nor of the documentation alone. The theme is that

in order to provide good documentation from the user's point of view it is necessary to identi-
fy what information the user needs, and when. Then, it is necessary to provide a channel from
the situation to the information. It is relatively unimportant what media are used for this in
any given case: they could be messages generated by the system or notices stuck to the termi-
nal. What matters is whether the user is able to get the information that is required. Note
that it is not relevant that the information is available in principle. What matters is whether

Vreal users, in real situations, can get the answers. If the user cannot solve the problem, then it
is the system design that is at fault, whether the designer can demonstrate that the relevant in-
formation was available to the user: the critical test is the practical one - do real users
succeed at the task?

Debugging the Interface

* When a piece of software has been implemented it needs to be tested and debugged: the
same applies to the user interface. In the past, debugging the interface has generally been left

* to the customer, whose complaints are classified as changes to the specifications. The net ef-
fect tends to be that changes are slow, expensive, resented by the programming team, and do
not benefit from any kind of systematic or professional approach. Clearly the field is more
than ready for improved practices.



I. 1J6. . N . -

Draper and Norman 14Software Engineering

What Is a Bug?7

e~g The field of debugging involves many issues. One problem is to determine what counts as
a bug, another is to determine what symptoms can be detected in practice (and what propor-
tion of bugs escape because they produce no clear symptoms), and yet another to determine
the cause from the symptom. The concept of 'bug" is clearly useful in both traditional and in-
terface software engineering, but nevertheless it has no clear definition. Some bugs are clear -I.' if an explicit specification is not met, the implementation has a bug. However there can be
bugs in the specifications themselves, and bugs relative to implicit specifications. A crucial
part of developing interface engineering will be developing standards that become implicit
specifications for all interface programming. (The analogous points for bugs in programs are
discussed in Johnson, Draper, & Soloway, 1983.)

We believe that the system specifications should include a statement about the class of
user and the kind of training that is to be expected. The system should then be evaluated with
that very same class of user, with the same training procedure. If the user then has problems,
there is a bug in the system. The bug could be in the training, or in the interface. The point
is that we cannot determine just where the problem lies until we have explicit specifications for
all aspects of the computer system, including the interface and the user performance. When
we have specifications that cover the user, then we can determine how reasonable they are on
the basis of the user's abilities. Only when we have determined that the specifications are
indeed reasonable can we then claim that the system that fails to meet those specifications is at
fault. This lesson applies to all parts of the system, of course, but its implications for assessing
the role of the user as a part of the overall system operation seem not to be properly recog-

% nized.

Finding Bugs

The only way to find bulp is to test. This means that the system must be put through its
paces with the human user, much as programs are put through their paces with test sets of
data. Just as a program needs testing by data that exercise every branch of the code, so the
user-program interaction needs testing by exercising each possible "branch" of the interaction.
Unfortunately, test procedures for user interfaces do not exist.

Note that the testing phase is not apt to be easy. It requires the development of good
test problems, of a good pool of users upon whom the tests will be run, and careful observa-
tion and evaluation of the result. It is critical that the users upon whom the system be tested
reflect the actual user population for whom the system is designed. Psychology has amassed a
number of methodological tools that can be of use. Other tools, specialized for this particular

.r. problem, need to be developed.
t. .-

Learning how to ask users for information is as big a topic as learning how to extract use-
ful measurements from computers. For instance, consider a faulty error message. If it is so
useless that the user cannot understand it and gets stuck, there is often a bias against reporting
the consequent failure to carry out the task successfully because the users are apt to feel that
the problems are due to their own inadequacies. On the other hand, if the message is wrong

Pero



Draper and Norman 115 Software Engineering

or silly in some way but nevertheless the users succeed in diagnosing the real problem fairly
quickly, then they arm likely to express their irritation. Note that this means that the non-fatal
inadequacy is likely to receive a much higher rate of spontaneous complaints than the much
mome serious case which causes users to fail completely. Obviously we need to learn how to
work around phenomena like this. For instance, using exhaustive checklists in questionnaires

(Root & Draper, 1983) ensures that one solicits opinions on all parts of an interface, and, to
some extent, allows one to see things such as mass avoidance of a command that no-one corn-

plains about spontaneously .

People are very sensitive to the context in which they are operating, and if one is not
careful, the test population may feel that it is they who are being evaluated (rather than the

~ 7 system), and they may carefully monitor their responses and behavior so that they will not
'look bad' or 'stupid' (Lewis, 196). One of us experienced the situation where a deficiency in
the system was not reported by any of the users because they attributed the difficulty to their
own inadequacies, not realizing that it could be avoided by a (rather simple) design change. In
this case, it required an experienced observer to watch users and note the problem. Note also
that the existence of any problem was at first denied by the design team who asked 'but why

has nobody ever complained?' This sounds reasonable, but is analogous to a programmer who
does no systematic tests and then uses the length of time before the first complaint as evidence
that complaints must be ill-founded. This is not a trivial instance: users who feel that a system
reveals their inadequacies will not wish to use the system and will resist its introduction into
the workplace. Thus, the system will not get used (or morale may suffer). The problem is to
devise techniques that allow the designer to realize the nature of the difficulty. It will take ex-
treme sensitivity on the part of the tester to overcome these problems. It is here that the skills
of the experimental psychologist are probably essential.

Debugging Tools

V. The use of questionnaires is analogous to a post-mortemn in that they are applied after the
program has run. One of the most pressing needs for interface debugging is to have facilities
analogous to run-time tests built into all computing environments that cause program excep-
tions for bad addresses, floating point overflow, etc. Although an important function for
these is, of course, the protection of other users, they ame also valuable for debugging because
they stop execution at the earliest sign of trouble and give the programmer a chance to gather
information on the state of the process at that point. Ease of debugging is crucially affected
by the immediacy of error detection, as anyone knows who has debugged programs with and

Lou without array bounds checking. Applied to interface debugging, this means developing suit-
able error criteria, and then acting on it. It is not necessarily appropriate to halt a program
when an error in interface interaction is detected, but at the least, one could create a relevant
'dump* - a trace of the whole interaction together with as much information as possible on
the users, their experience, and their current goals and thoughts at the time of t?'- difficulty.

0 The various existing techniques for getting at the interaction between the user and the
system differ in their immediacy and the information provided. Furthest removed from the ac-

6 4 tual interaction is the collection of opinions after some amount of experience with the systemII (e.g., at completion of the training period). Closer to the actual usage is the use of on-line

complaint facilities. A still more immediate record is provided by history traces or dribble files



Draper and Norman 116 Software Engineering

that provide a detailed record of the low-level actions of the user, but without any of the goals
or intentions. Intentions and goals can be gotten by the collection of real-time, thinking-aloud
protocols from users while they interact with the system. Each technique offers a different
perspective on the interaction.

Testing the Interface

Imprving Measures of Perfor-mance

In addition to debugging, a programmer will typically be concerned with examining and
optimizing certain measures. The best parallel here is with the problem of improving a

-. program's speed of execution. The conventional wisdom on the timing problem is that a typi-
cal program spends 90% of its time in 10% of its code, so the strategy is to identify that 10%
and work on tuning it, since work on improving the other 90% will show little effect overall.
Thus, profiling tools that show where a program spends its time are important. In improving
an interface, several issues are relevant: how many users find a given command problematic?;
how problematic do they find it?; how often does the issue arise? As with debugging, we see
here a gap between what can be easily and directly measured and the underlying concern of the
designer.

Like profiling tools, then, interface tools should produce measures of those things that
can be used by the designer to pick the next point of attack, together with a measure of how
important it is to do any further improvements. Also like profiling tools, there will be issues
of how accurate these measurements are (resolution difficulties) and how representative of the
real situation. Ultimately a lot will also depend on the experience and judgment of the
designer using the tool. Thus not only do the tools need to be developed, but it will then take

* '. a further significant amount of time to accumulate experience in the use of these measures.

* Another tool is on-line command usage measurements. It is relatively easy to collect a
running record of command use for the various users of a system, thus providing reliable meas-
ures of how often commands are used, and by what percentage of users. The frequency of use

- ,- is important in weighing the priority to be given to problem. 45

Benchmarks and Acceptance Tests

Earlier, we discussed Schneiderman's (1982) suggestion that the specification of the inter-
face be given in terms of the acceptance tests to which it will be subjected. This idea can have
far-reaching effect in focusing designers' attention on a definite goal for the interface. Wheth-
er success at a particular test turns out to be a good guide to the uses long-term satisfaction
with the product, it is at least at an app-opriate level of specification; this is a crucial step in
extending software engineering to interface design.

45. 'Mom issa major problema of invasion of privacy. It is not appropriate to keep records on the details of individual
.e users' intersetions with a system. Our solution is to encode the user's identity so that although the user identity can-
* not be determined, we can still match up the particular command smiucuces and program usages with the user codes

Itis is essential in allowing the discovery of common patterns of operation.

.A



Draper and Norman 117 Software Engineering

User-interface benchmarks will be most clearly useful when the aspects of performance
and the situation in which it is to be measured are clearly defined. As a general method by
which to judge a whole system, benchmarks are obviously limited; systems differ on many di-
mensions and benchmarks often generate only a single measure. The use of benchmarks for in-
terf aces is further problematic in these early days since we do not yet know all the crucial vari-

ables. For instance, discussions about which of two operating systems are more effective for a
class of users are sometimes carried on without considering the communication rate of the
channel to the user, yet this crucially affects how much feedback is perceived as a painfully

time-wasting nuisance. In general, factors not directly under the control of the engineer may
have a dominating effect. Until we are more confident of being conscious of the factors that
have a major influence on the meisures we are interested in, we will not know how to run
benchmarks in which they are held constant.

References

Bianchi, M., Glushko, R., & Mashey, J. (1982). A software/documentation development
environment built from the UNIX toolkit. In H. J. Schneider & A. I. Wasserman

(Eds.), Automated tools for information systems design, (pp. 107-108). Amsterdam.

Badre, A., & Shneiderman, B. (Eds.). (1982). Directions in human-computer interaction. Nor-
wood, NJ: Ablex.

Buxton, W., Lamb, M. R., Sherman, D., & Smith, K. C. (1983). Towards a comprehensive I.
user interface management system. Computer Graphics. 35-41.

Card, S., Moran, T., & Newell, A. (1983). The psychology of hsmn-computer interaction.
Hillsdale, NJ: Erlbaum.

Janda, A. (Ed.). (1983). Proceedings of tMe CHI '83 Conference on Hwnwn Factors in Comput-
ing Systems, New York: ACM.

Johnson, W. L., Draper, S. W., & Soloway, E. (1983). Classifying bugs is a tricky busi-
ness. Proceedings of the Seventh Annual NASA/Goddard Software Engineering Conference.
Baltimore.

Kersten, M. L., Wasserman, A. I., & van de Riet, R. P. (1982). Troll/USE reference mwu,-
al. San Francisco: University of California, San Francisco, Laboratory of Medical In-
formation Science.

Knuth, D. E. (1983). Literate Programming (Report Number STAN-CS-82-981). Palo Alto,
CA: Stanford University, Department of Computer Science.

46. A statistical problem arises in benchmark tests with users that do.s not normally arise with hardware: unlike cow-
puter hardware one can neither get identical people (so that sinte measurements neralize reliably) nor run a test
twice on the same people with identical results (becase of learning effects). Even when we understand the causes of

variation well enough to apply statistics with confidence, this will still mean running large numbers of trials where
one would have been sufficient to benchmark a machine.

-.

% " ", - ,,'a'' 'i
'

." - ," " . °'. ," -"" " - . ". ". . - "" -. " " " " " . - "- " - • " . " -. - - - - --r -



Draper and Norman 118 Software Engineering4.' 4

Lewis, C. (1983, December). The 'thinking-aloud' method in interface evaluation. Tutorial
Number 4, presented at the CHI '83 Conference on Human Factors in Computing Sys-
tems, Boston.

Nievergelt, J. (1982a). Errors in dialog design and how to avoid them. International Zurich

Seminar on Digital Communications, IEEE, Institutfuer Irformatik, ETH, 47.

Nievergelt, J. (1982b). Towards the integrated interactive system: An experiment in man-
machine communication. Institutfuer Informatik. ETH, 47.

Norman, D. A. (1983). Design principles for human-computer interfaces. In A. Janda
(Ed.), Proceedings of the CHI '83 Conference on Human Factors in Computing Systems
(pp. 1-10). New York: ACM.

Perlman, G. (1983). Software tools for user-interface development. Presented at the Summer
USENIX Conference, Toronto, Canada.

Roach, J., Hartson, H. R., Ehrich, R. W., Yunte, T., & Johnson, D. H. (1982). DMS: A
comprehensive system for managing human-computer dialogue. Proceedings of the CHI
'82 Human Factors in Computer System Conference. (pp. 102-105). Gaithersburg, MD.

Root, R. W., & Draper, S. (1983). Questionnaires as a software evaluation tool. In A.
Janda (Ed.), Proceedings of the CHI '83 Conference on Human Factors in Computing Sys-
tems (pp. 83-87). New York: ACM.

Sheil, B. (1983). Power tools for programmers. Daamation, 29,131-144.

Shneiderman, B. (1980). Software psychology: Human factors in computer and irformaion
systems. Cambridge, MA: Winthrop.

Shneiderman, B. (1982). The future of interactive systems and the emergence of direct
manipulation. Behavior and Information Technology, 1. 237-256.

Smith, D. C., Irby, C., Kimball, R., & Verplank, B. (1982, April). Designing the Star user
interface. Byte, 7. 242-282.

Wasserman, A. I., & Shewmake, D. T. (1982). Rapid prototyping of interactive informa-
tion systems. Proceedings of the 2nd SIGOFT Symposium - Workshop on Rapid Prototyping.
Columbia, MD.

4-4



Cognitive Science ONR Technical Report List

The following is a list of publications by people in the Cognitive Science Lab and the Institute
for Cognitive Science. For reprints, write or call:

Institute for Cognitive Science, C-015
University of California, San Diego
La Jolla, CA 92093
(619) 452-6771

8001. Donald R. Gentner, Jonathan Grudin, and Eileen Conway. Finger Movements in Tran-
scription Typing. May 1980.

8002. James L. McClelland and David E. Rumelhart. An Interactive Activation Model of the
Effect of Context in Perception: Part 1. May 1980.

80. David E. Rumelhart and James L. McClelland. An Interactive Activation Model of the
Effect of Context in Perception: Part 11. July 1960.

8004. Donald A. Norman. Errors in Human Performance. August 1980.

8005. David E. Rumelhart and Donald A. Norman. Analogical Processes in Learning. Sep-
tember 1980.

8006. Donald A. Norman and Tim Shallice. Attention to Action: Willed and Automatic Control
of Behavior. December 1980.

8101. David E. Rumelhart. Understanding Understanding. January 1981.

8102. David E. Rumelhart and Donald A. Norman. Simulating a Skilled Typist: A Study of
Skilled Cognitive-Motor Performance. May 1981.

8103. Donald R. Gentner. Skilled Finger Movements in Typing. July 1981.

8104. Michael I. Jordan. The Timing of Endpoints in Movement. November 1981.

8106. Gary Perman. Two Papers in Cognitive Engineering: The Design of an Interface to a Pro-
gramming System and MENUNIX: A Menu-Basea Interface to UNIX (User Manual).
November 1981.



-R14i 023 USER CENTERED SYSTEM DESIGN PART 2 COLLECTED PAPERS 212
FROM THE UCSD NMI PROJECT(U) CALIFORNIA UNIV SAN DIEGO
LA JOLLR INST FOR COGNITIVE SCIENCE MAR 84 ICS-8482

UNCLASSIFIED NSG014-79-C-8323 F/G 5/8 NLEu..../-



l

li"Y1.

III1 III1 IL I11111 .1 i~ 10 .6
* ~ 1111 18L

iii.25 Ii'* 11111 -

MICROCOPY RESOLUTION TEST CHART

NATIONAL OLUEAU OP STAWjOARDS - IS3 - A

~ ~ i



8UOL Donald A. Norman ad Dia,,e Fisher. Why A tabec Keyboards Are Not EarV to Use:
Keybard Layout Dosit Msck Moner. November 1981.

07. Donald R. Getner. Evidence Aa a Central Control Model of Timing in Typing.

December IM8.

82M. Jonathan T. Grudin and Sap Latochelle. Dilrqph Freqwwty Effects In Skilled Typing.
I Februay lgNZ

82M3. Jonathan T. Grudin. Central Control of Timing i Skilled Typift.
" February 1982.

8205. Amy Geoffrey and Donald A. Norman. Eas of' Tqqft the Finger s In• $See

Depends on the Meta Encoding. blarch 1982

=24. LNR Research Group. $tdies of Typft.from Olw LNR Research Grasp: The roke of cow.
text, diff erence#s sill levl, errors, ho movements and a computer sibwdaio Ma y 1982.

SM0. Donald A. Norman. Five Papers on HawwwMmdn Interactio. May 1982.

8206. Naomi Miyake. Constructve Interaction. Jue 19M2

OW0. Donald R. Gentner. Tim Develpmew of Typewrhiog $Adll. September 198L.

8M0. Gury Pelman. Noala Artificial La o #: Lo ! Processes. December l9a2

8301. hichsel C. Mozer. Letter Migrato I Word Perceptim. April 1983.

810. David . rum ht and Donald A. s . Wkj Aeprese ybon ds Memory. June 1983.

83M. The HM Project at Univerity of California, San Diqp. Unr Cenroed Syste Desrig"
Pars 1. Papers for tde CHI 1983 Coiferenc on Homa Factort s InCoxmer Systems.
November 1983.

8M. Paul Smolnsky. Harmo y Theory: A Makemaelcn Framework or SocTic Paral Pr.
ceai. D ecember 1983.

8401. Sntphen W. Drudn and Dold A. Norm . Softre Egle r Efector Uer ieprge.
Juary 1964.

N. Th UCSD Project. User Centerod System Deignle Part I. Collected P rs. March
19 1

OM. Paul Smoffroy and Wry S. Rley. Hrmny TeTorT: Pro sh Fonr. Prnl Cogtive
Models an Ther PEcn. April 1964.

00. .... sac. r. Sds T nf te.s....r.c



ICS Technica Repart Ust

* The following is a limt of publicatons by people in the Institute for Copiiv Science. For
mreputa, write at cmli

Institute for Covitive Scimnce, C415
University of California, Sam Diego
La Jolla CA SM9
(619) 42-677

WK. David Zi4um. Tbr Reprewei Vf Lormimm May DO.

8W. Jeffry Elnua A Jay W4aC~ad. Speck Peucapim m a Cop~4ai Prove= TA. lear.
V, div Activalc Moel. April IM.

SM. Ron Williamem. Uris AceVal. Ralef Ceydata. Netwrks. Noveumber IN&.

SM4 David Zipser. Tb Ropaemmamof~ May.. Noember I9U.

US. The HI ftuje. User Cewa Sywe Deipr Pdrt I. Pq s for At CM! '81 Cmer.

ewer m Factrs n aCauiper Sysmini. Neveember 19a

IM Paul Smlmny. Nwnuq Tbeey: A Nabine"c Frommark fwr Smh* Pdal
Provesift. Decmber IN&

SM0. Stephen W. Draper mad Donald A. Noraman. Sqta'wa Zq~mmeerlq Umr 1,fwes.
Januwy 1964.

SMU The UCSD HM[l Project. Ur Camavd Syeum Dalpu Par it. Cdkcued Pqers.
March 1964.

8M. Steven L Oreespan. Rafoernce -- gbwl A TpcC.mws A.idysis of Sam.,e-
Pies.. Verificmirs AprI 96.

UK4 Padl Smoleaky and Muy S. Riley. NerWOW TbnWY: PraM... Sal vi. Pdal CqrNIai
Model,. ad Tbrausu Physics. April INC4



ONR Distnbution Lis

4 bI I-j

ISI

91 1! Tr. 3 J'1

A., i, I - !-'! -I - ,
- i-iV]=: !ii

Ilia

aJ Isill t •~l 11 l

Ii J

-;is A1 oill a, I] M-

Il - 1 me ~ Ile In I tall- i !1I
I iia ili !I ukii i i s I M ;I-1

uill I-h. tI i. 1114!
I Iils l, ,iI ' im l j il ii l ll i h ils

....... Il



ONR Distribution List

i i ,-:M i i

!i -a"

IIt

!IF

rig Ira il~ E'--'- ---, -

I iill 4i 1 11 1

l'l ,a Sl Ajil ii

*' i n,i I "_il i'

2 !:, . *, ~i ,, 3



ONR Distribution Li

Mli E lIi- I -- -

i , I

e V.

.1 JiM _6 Z1 i t JAU " A i

" fit J I OU * S l 33 8

ll!Zl bl Ibl:_ bill ]I i3 I ] ]ll1 Jill!-i ,-i

* I

I a~i a'[ !' p ,I~i ,

in %in 1J .i

£ IAl a~s i!6 la d41 1 1.

£13 S £&fa1i AH 13A 1; 111.flw1 112

vt I k 1_ -

illsF) fi 1 11



ONt Distradion Lt

9

" " is " = a a=1&8 Allis
-_'n M i , i i t,_,

I I viaJI

• im . hia M RJ -ma im-A

as ixami! II| i
'N_- - l i , as- ,

- .1 3 
I I I - .

g jail ill i Nil ii-,iil iflt N3131 iit it 1

IiR 

i f

rt a ir 
is 

c

S. i d

i ~Z ,*ii i !',

tlj II ii m i i. ll !Zlj i aA A;IA

.t1 - -- 1 - . . -

• S. U

• S EI j I

I;, _.i] i 'lii!,l-I '



*1-

444

t~(

iv

0 4 e.l

___ p'- T'.,.


